Cahillabernathy3735

Z Iurium Wiki

Triclocarban (TCC) is in great market demand especially after the outbreak of COVID-19 pandemic, becoming an emerging pollutant. However, the impacts of TCC on the performance of nitrifying granular sludge system and the occurrence of antibiotic resistance genes (ARGs) were still unknown. This work explored the impacts of different concentrations of TCC on nitrifying granular sludge. read more Results showed that TCC suppressed the activities of ammonia-oxidizing microorganisms and decreased the abundance of Nitrospira. Adsorption was the main way for the removal of TCC and the biodegradation efficiency of TCC increased to 28.00% under 19.70 mg/L TCC addition. TCC enriched the ARGs and promoted the risks of their transferring in microorganisms. Pseudomonas might not only have strong resistance to TCC, but also propagate ARGs. The removal process of TCC and bacterial communities were important factors to promote the spread of ARGs. Thus, the existence of TCC presented a great environmental risk.This study reports a MgAl-LDH rice husk biochar composite (MgAl-LDH@RHB) with a regular hydrotalcite structure synthesized by a simple hydrothermal method, which was then used to remove Cd(II) and Cu(II) from water. The influencing factors on the adsorption performance were determined through batch adsorption experiments, and the adsorption characteristics and cycling capacity were evaluated with eight models and adsorption-desorption experiments. The results showed that the adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB conformed to the Langmuir-Freundlich model and PSO kinetics model, indicating single-layer chemical adsorption. In addition, the experimental maximum adsorption capacities for Cd(II) and Cu(II) were 125.34 and 104.34 mg g-1, respectively. The adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB was dominated by surface precipitation and ion exchange. The findings reveal the mechanism for the heavy metal removal by MgAl-LDH@RHB and provide a theoretical reference for agricultural waste disposal and water pollution control.Spent tea leaves (STL) are generated after the extraction of liquor from processed tea leaves and are regarded as an underutilized waste. STL are rich in essential amino acids, ω-6 and ω-3 fatty acids, alkaloids (theobromine and caffeine), polyphenols (catechin, theaflavins and rutin) and minerals (Ca, P, K, Mg, Mn) that could be utilized for the production of industrially important products. Vermicomposting, anaerobic digestion, silage preparation and fermentation are currently used as low cost methods for the bioconversion of STL to a usable form. Structural, morphological and chemical modification of STL after suitable bioconversion enables its application in the development of biopolymers, biofuels, catechin derivatives, biochar, absorbents for dye, and for removal of Cd, Hg, Cr(IV), As(V) and aspirin. This review discusses the composition, characterization, bioconversion and value added product generation from STL while highlighting prospective applications of STL in developing battery electrodes, nanocatalysts, insulation materials and edible bioactive peptides.The application of sulfidated zero-valent iron as an alternative used in coupled anaerobic systems to improve methane production is usually restricted by its high production costs and toxic gasses and wastewater generation. In this study, a collaborative strategy for coupling zero-valent iron (ZVI) and ferrous sulfide (FeS) together into anaerobic systems was used to evaluate the enhancement of methanogenesis during the co-digestion of food waste and waste activated sludge, with the microbial evolution and metabolic pathway revealed. Results showed that the enhanced hydrolysis and acidogenesis process of co-digestion in this coupled anaerobic system could be attributed to synergistic interactions among ZVI, FeS, and microorganisms. Furthermore, both acetoclastic and hydrogenotrophic pathways could be promoted by coupling ZVI and FeS. This study demonstrated that coupling ZVI and FeS together into anaerobic systems would be a promising method for improving the methanogenic performance for municipal solid waste treatment.Pure microalgae cultivation in organic wastes may be hampered by their low adaptation to extreme growth conditions and by the risk of microbial contamination. This work aimed to isolate self-adapted microalgae-microbial consortia able to survive in organic wastes characterized by extreme conditions, to be then proposed for technological application in removing carbon and nutrients from wastes' streams. To do so, sixteen organic wastes with different origins and consistency were sampled. Twelve microbial consortia were isolated from wastes and their eukaryotic and prokaryotic compositions were analyzed by next generation sequencing. Eight eukaryotic communities were dominated by Chlorophyta, led by Chlorella, able to survive in different wastes regardless of chemical-biological properties. Tetradesmus, the second most represented genus, grew preferentially in substrates with less stressing chemical-physical parameters. Chlorella and Tetradesmus were mostly isolated from cow slurry and derived wastes which proved to be the best local residual organic source.Vanillin is a natural flavoring agent that is widely used in the bioengineering industry. To enable sustainable development, joint consideration of bacterial performance and negative environmental impacts are critical to vanillin biosynthesis. In this study, a cold shock protein (csp) gene was upregulated for maintaining stable growth in Arthrobacter sp. C2 responding to vanillin and cold stress. Furthermore, the recombinant strain C2 was constructed by simultaneously deleting the xylC gene encoding benzaldehyde dehydrase and overexpressing the pchF gene encoding vanillyl alcohol oxidase and achieved a maximum vanillin productivity of 0.85 mg/g DCW/h with alkaline lignin as the substrate. Finally, this process generated an environmental impact value of 25.05, which was the lowest environmental impact achieved according to life cycle assessment (LCA). Improvement strategies included reducing electricity consumption and replacing chemicals. This study achieved the development of an effective strategy, and future studies should focus on precise vanillin biosynthesis methods for large-scale application.The purification effect of two different microalgae-fungi-bacteria symbiosis technologies on biogas and biogas slurry was studied to determine the best symbiosis treatment technology and the suitable concentration of GR24. The results showed that the purification effect of biogas slurry in Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria (S395-2) symbiont co-culture system was better than that of the biogas slurry in Scenedesmus obliquus-Pleurotus ostreatus-S395-2 symbionts. Following 10-9 M GR24 treatment, Chlorella vulgaris-Ganoderma lucidum-S395-2 symbionts had elevated mean daily production rate and growth rate by 1.92 and 1.46 folds in comparison with blank group. After adjusting the GR24 level within the range of 10-9 M-10-7 M, Ganoderma lucidum-assisted Chlorella vulgaris-S395-2 attained higher maximal removal rates for TN, COD, CO2, and TP by 10.78%, 14.62%, 3.86%, and 9.07%, respectively, compared to the rates when GR24 was not added.Vermiconversion possibility of waste biomass of two medicinal herbs Zingiber officinale and Curcuma longa has been investigated. The Eisenia fetida, an epigeic earthworm was used in the vermicomposting process. The vermicomposting caused shifting in pH towards neutral range, reduction in electrical conductivity, total organic carbon, C/N and C/P ratios whereas1.8-2.73 folds enhancement in macronutrients (TKN, AP, T Ca and T Mg) and ash contents in the substrate mixture. The heavy metals and trace elements content in the vermicompost were found within 3.25-1380 mg/kg and are under the permissible limits of compost applications. Besides, high germination index value in the vermicompost extract indicates loss of phytotoxicity and safe agricultural application potential of the end product. Finally, enhanced growth in Eisenia fetida confirms the application potential of harvested waste biomass as the raw materials for vermiconversion process.Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.Monolithic carbon foams are promising materials for adsorption due to the easy recyclability and without secondary-pollution. However, poor adsorption efficiency for organic pollutants limits its practical application. Hence, this work proposed a novel monolithic porous carbon foam by a facile carbonization approach as freestanding electrodes to remove the organic dyes. The prepared carbon foam derived from waste cigarette filters and zeolitic-imidazolate frameworks-8 with well-developed pores, and the calculated surface area is 1457 m2·g-1, and exhibited an outstanding removal efficiency for methylene blue in aqueous. The maximum adsorption capacity for methylene blue can reach up to 1846.7 mg·g-1 under the applied voltage of -1.2 V. Importantly, as-prepared carbon foams possessed excellent stability, and the removal efficiency can remain above 85% after 5 cycles. Thus, obtained porous carbon foams in this paper as a free standing electrode is expected to be promising materials of adsorbent besides supercapacitors.The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment.

Autoři článku: Cahillabernathy3735 (Jackson Rollins)