Byersibsen9825
nstream Versus Upstream Strategy for the Administration of P2Y
Receptor Blockers In Non-ST Elevated Acute Coronary Syndromes With Initial Invasive Indication [DUBIUS]; NCT02618837).
Downstream and upstream oral P2Y12 inhibitor administration strategies were associated with low incidence of ischemic and bleeding events and minimal numeric difference of event rates between treatment groups. These findings led to premature interruption of the trial and suggest the unlikelihood of enhanced efficacy of 1 strategy over the other. (Downstream Versus Upstream Strategy for the Administration of P2Y12 Receptor Blockers In Non-ST Elevated Acute Coronary Syndromes With Initial Invasive Indication [DUBIUS]; NCT02618837).Despite myriad demonstrations of feasibility, the high dimensionality of fMRI data remains a critical barrier to its utility for reproducible biomarker discovery. Recent efforts to address this challenge have capitalized on dimensionality reduction techniques applied to resting-state fMRI, identifying principal components of intrinsic connectivity which describe smooth transitions across different cortical systems, so called "connectivity gradients". These gradients recapitulate neurocognitively meaningful organizational principles that are present in both human and primate brains, and also appear to differ among individuals and clinical populations. Here, we provide a critical assessment of the suitability of connectivity gradients for biomarker discovery. Using the Human Connectome Project (discovery subsample=209; two replication subsamples= 209 × 2) and the Midnight scan club (n = 9), we tested the following key biomarker traits - reliability, reproducibility and predictive validity - of functional gradieequisite for validity. Importantly, prediction accuracy with connectivity gradients exceeded that observed with more traditional edge-based connectivity measures, suggesting the added value of a low-dimensional and multivariate gradient approach. AMD3100 chemical structure Finally, the present work highlights the importance and benefits of systematically exploring the parameter space for new imaging methods before widespread deployment.Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains.In humans, face-processing relies on a network of brain regions predominantly in the right occipito-temporal cortex. We tested congenitally deaf (CD) signers and matched hearing controls (HC) to investigate the experience dependence of the cortical organization of face processing. Specifically, we used EEG frequency-tagging to evaluate (1) Face-Object Categorization, (2) Emotional Facial-Expression Discrimination and (3) Individual Face Discrimination. The EEG was recorded to visual stimuli presented at a rate of 6 Hz, with oddball stimuli at a rate of 1.2 Hz. In all three experiments and in both groups, significant face discriminative responses were found. Face-Object categorization was associated to a relative increased involvement of the left hemisphere in CD individuals compared to HC individuals. A similar trend was observed for Emotional Facial-Expression discrimination but not for Individual Face Discrimination. Source reconstruction suggested a greater activation of the auditory cortices in the CD group for Individual Face Discrimination. These findings suggest that the experience dependence of the relative contribution of the two hemispheres as well as crossmodal plasticity vary with different aspects of face processing.Quantitative evaluation of brain myelination has drawn considerable attention. Conventional diffusion-based magnetic resonance imaging models, including diffusion tensor imaging and diffusion kurtosis imaging (DKI),1 have been used to infer the microstructure and its changes in neurological diseases. White matter tract integrity (WMTI) was proposed as a biophysical model to relate the DKI-derived metrics to the underlying microstructure. Although the model has been validated on ex vivo animal brains, it was not well evaluated with ex vivo human brains. In this study, histological samples (namely corpus callosum) from postmortem human brains have been investigated based on WMTI analyses on a clinical 3T scanner and comparisons with gold standard myelin staining in proteolipid protein and Luxol fast blue. In addition, Monte Carlo simulations were conducted to link changes from ex vivo to in vivo conditions based on the microscale parameters of water diffusivity and permeability. The results show that WMTI metrics, including axonal water fraction AWF, radial extra-axonal diffusivity De⊥, and intra-axonal diffusivity Dawere needed to characterize myelin content alterations.