Bushmonroe5867
We demonstrate the usefulness of the proposed algorithm by providing a web portal that allows mental health researchers to peruse the suicide-related literature in PubMed.Learning Health System (LHS) proposes a new paradigm in scientific enterprise to facilitate the rapid movement of data to knowledge (D2K) and knowledge to practice (K2P). Informatics can play a pivotal role in facilitating feedback loops and rapid cycles of learning across D2K and K2P. Though informatics has been acknowledged as a critical component of LHS, it remains unclear how leaders in informatics are conceptualizing its role in promoting LHS. This study sought to gain insights from informatics leaders and experts on their perspectives around role of informatics in LHS. We conducted semi-structured interviews with fourteen informatics leaders across different informatics domains and leadership positions. Our results revealed areas of agreement around key concepts related to LHS as well as opportunities to improve messaging and add clarity to the role of informatics in promoting LHS.A growing quantity of health data is being stored in Electronic Health Records (EHR). The free-text section of these clinical notes contains important patient and treatment information for research but also contains Personally Identifiable Information (PII), which cannot be freely shared within the research community without compromising patient confidentiality and privacy rights. Significant work has been invested in investigating automated approaches to text de-identification, the process of removing or redacting PII. Few studies have examined the performance of existing de-identification pipelines in a controlled comparative analysis. In this study, we use publicly available corpora to analyze speed and accuracy differences between three de-identification systems that can be run off-the-shelf Amazon Comprehend Medical PHId, Clinacuity's CliniDeID, and the National Library of Medicine's Scrubber. No single system dominated all the compared metrics. NLM Scrubber was the fastest while CliniDeID generally had the highest accuracy.Complementary alternative medicine, especially dietary supplements (DS), has gained increasing popularity for weight loss due to its availability without prescription, price, and ease of use. Besides weight loss, there are various perceived, potential benefits linked to DS use. However, health consumers with limited health literacy may not adequately know the benefits and risk of overdose for DS. In this project, we aim to gain a better understanding of the use of DS products among obese people as well as the perceived benefits of these products. We identified obese adults after combining the National Health and Nutrition Examination Survey data collected from 2003 to 2014. We found that there is a knowledge gap between the reported benefits of major DS by obese adults and the existing DS knowledge base and label database. This gap may inform the design of patient education material on DS usage in the future.We present sig2db as an open-source solution for clinical data warehouses desiring to process natural language from prescription instructions, often referred to as "sigs". In electronic prescribing, the sig is typically an unstructured text field intended to capture all requirements for medication administration. The sig captures certain fields that the structured data may lack such as days supply, time of day, or meal-time considerations. Our open-source software package facilitates the workflow needed to process sigs into a structured format usable by clinical data warehouses. Our solution focuses on extracting concepts from prescriptions in order to understand the intended semantics by leveraging known natural language processing tools. selleck chemical We demonstrate the utility of concept extraction from sigs and present our findings in processing 1023 unique sigs from 5.7 million unique prescriptions.Identifying patient characteristics that influence the rate of colorectal polyp recurrence can provide important insights into which patients are at higher risk for recurrence. We used natural language processing to extract polyp morphological characteristics from 953 polyp-presenting patients' electronic medical records. We used subsequent colonoscopy reports to examine how the time to polyp recurrence (731 patients experienced recurrence) is influenced by these characteristics as well as anthropometric features using Kaplan-Meier curves, Cox proportional hazards modeling, and random survival forest models. We found that the rate of recurrence differed significantly by polyp size, number, and location and patient smoking status. Additionally, right-sided colon polyps increased recurrence risk by 30% compared to left-sided polyps. History of tobacco use increased polyp recurrence risk by 20% compared to never-users. A random survival forest model showed an AUC of 0.65 and identified several other predictive variables, which can inform development of personalized polyp surveillance plans.Individuals increasingly rely on social media to discuss health-related issues. One way to provide easier access to relevant in- formation is through sentiment analysis - classifying text into polarity classes such as positive and negative. In this paper, we generated freely available datasets of WebMD.com drug reviews and star ratings for Common, Cancer, Depression, Diabetes, and Hypertension drugs. We explored four supervised learning models Naive Bayes, Random Forests, Support Vector Machines, and Convolutional Neural Networks for the purpose of determining the polarity of drug reviews. We conducted inter-domain and cross-domain evaluations. We found that SVM obtained the highest f-measure on average and that cross-domain training produced similar or higher results to models trained directly on their respective datasets.Modern electronic health records (EHRs) provide data to answer clinically meaningful questions. The growing data in EHRs makes healthcare ripe for the use of machine learning. However, learning in a clinical setting presents unique challenges that complicate the use of common machine learning methodologies. For example, diseases in EHRs are poorly labeled, conditions can encompass multiple underlying endotypes, and healthy individuals are underrepresented. This article serves as a primer to illuminate these challenges and highlights opportunities for members of the machine learning community to contribute to healthcare.