Burnssnyder3836
There is a huge concern in the medical field concerning the emergence of bacterial resistance to antibiotics. Essential oils are a source of antibacterial compounds that can overcome this problem. Ten essential oils that are commercially available were investigated in the present study ajowan, basil, German chamomile, Chinese cinnamon, coriander, clove, lemongrass, Spanish lavender, oregano and palmarosa. Their direct, synergistic and indirect antibacterial activities were evaluated against different human pathogenic Gram-positive and Gram-negative strains. To evaluate their possible use in clinics, the cytotoxicity of these essential oils was also tested on keratinocyte and epithelial cell lines. Except for the Chinese cinnamon, coriander and lemongrass, all other essential oils presented no cytotoxicity at 32 and 16 μg/mL. The highest indirect antibacterial activities were observed with the palmarosa and Spanish lavender in association with penicillin V. These two associations presented a 64-fold decrease against a resistant strain of Staphylococcus aureus, however, at a cytotoxic concentration. It can also be highlighted that when tested at a non-cytotoxic concentration, the activity of oregano in association with penicillin V presented an eight-fold decrease. These results show the interest to use essential oils in combination with antibiotics to reduce their concentrations inside drugs.The objective of this study was to determine the best operational conditions for obtaining red propolis extract with high antioxidant potential through supercritical fluid extraction (SFE) technology, using carbon dioxide (CO2) as the supercritical fluid and ethanol as the cosolvent. The following parameters were studied overall extraction curve, S/F (mass of CO2/mass of sample), cosolvent percentage (0, 1, 2 and 4%) and global yield isotherms as a function of different pressures (250, 350 and 450 bar) and temperatures (31.7, 40 and 50 °C). Within the investigated parameters, the best conditions found were an S/F of 131 and the use of ethanol at the highest concentration (4% w/w), which resulted in higher extract yields and higher content of antioxidant compounds. Formononetin, the main biomarker of red propolis, was the compound found at the highest amounts in the extracts. As expected, the temperature and pressure conditions also influenced the process yield, with 350 bar and 40 °C being the best conditions for obtaining bioactive compounds from a sample of red propolis. read more The novel results for red propolis found in this study show that it is possible to obtain extracts with high antioxidant potential using a clean technology under the defined conditions.Uveal melanoma (UM) is the most common intraocular tumor in adults. Despite effective local treatments, 50% of patients develop metastasis. Better ways to determine prognosis are needed as well as new therapeutic targets. Epigenetic changes are important events driving cancer progression; however, few studies exist on methylation changes in UM. Our aim was to identify methylation events associated with UM prognosis. Matched clinical, genetic, and methylation data for 80 UM cases were obtained from The Cancer Genome Atlas (TCGA). Top differentially methylated loci were sorted through hierarchical clustering based on methylation patterns, and these patterns were compared to tumor characteristics, genomic aberrations, and patient outcome. Hierarchical clustering revealed two distinct groups. These classifications effectively separated high and low-risk cases, with significant differences between groups in patient survival (p less then 0.0001) and correlation with known prognostic factors. Major differences in methylation of specific genes, notably NFIA, HDAC4, and IL12RB2, were also seen. The methylation patterns identified in this study indicate potential novel prognostic indicators of UM and highlight the power of methylation changes in predicting outcome. The methylation events enriched in the high-risk group suggest that epigenetic modulating drugs may be useful in reducing metastatic potential, and that specific differentially methylated loci could act as biomarkers of therapeutic response.Sentinel lymph node biopsy (SLNB) is a diagnostic staging procedure that aims to identify the first draining lymph node(s) from the primary tumor, the sentinel lymph nodes (SLN), as their histopathological status reflects the histopathological status of the rest of the nodal basin. The routine SLNB procedure consists of peritumoral injections with a technetium-99m [99mTc]-labelled radiotracer followed by lymphoscintigraphy and SPECT-CT imaging. Based on these imaging results, the identified SLNs are marked for surgical extirpation and are subjected to histopathological assessment. The routine SLNB procedure has proven to reliably stage the clinically negative neck in early-stage oral squamous cell carcinoma (OSCC). However, an infamous limitation arises in situations where SLNs are located in close vicinity of the tracer injection site. In these cases, the hotspot of the injection site can hide adjacent SLNs and hamper the discrimination between tracer injection site and SLNs (shine-through phenomenon). Therefore, technical developments are needed to bring the diagnostic accuracy of SLNB for early-stage OSCC to a higher level. This review evaluates novel SLNB imaging techniques for early-stage OSCC MR lymphography, CT lymphography, PET lymphoscintigraphy and contrast-enhanced lymphosonography. Furthermore, their reported diagnostic accuracy is described and their relative merits, disadvantages and potential applications are outlined.Natural and anthropogenic soil degradation is resulting in a substantial rise in the extension of saline and industrially-polluted soils. Phytoremediation offers an environmentally and economically advantageous solution to soil contamination. Three growth trials were conducted to assess the stress tolerance of native Canadian genotypes of Populus balsamifera L., Salix eriocephala Michx., and one hybrid willow (S. discolor × S. dasyclados) to salinity and hydraulic fracturing (fracking) wastewater. Thirty-three genotypes were grown in NaCl or fracking wastewater solutions between 0 and 7 mS-1 over a period of 3-4 months. P. balsamifera was observed to be relatively salt-intolerant compared to S. eriocephala and hybrid willow, which is likely caused by an inability of P. balsamifera to restrict Na+ translocation. Photosynthesis and transpiration decreased with salinity treatments, and severe reductions occurred with exposure to fracking solutions. Raffinose and stachyose content was tripled in leaf and root tissues. In willows, Na+ was primarily confined to root tissues, Cl- accumulated up to 5% dry weight in leaves, and K+ was translocated from roots to leaves. Willow genotypes CAM-2 and STL-2 displayed the greatest maintenance of growth and resistance to necrotic symptoms in all trials, suggesting that these genotypes may be useful for practical application and further field study.Severe plastic deformation (SPD) processes are widely used for improving material properties. A distinguishing feature of many SPD processes is that the principal axes of the stress tensor intensively rotate relative to the material. Nevertheless, no measure of this rotation is involved in the constitutive equations that predict the evolution of material properties. In particular, a typical way of describing the effect of SPD processes on material properties is to show the dependence of various parameters that characterize these properties on the equivalent strain. However, the same level of the equivalent strain can be achieved in a process in which the principal axes of the stress tensor do not rotate relative to the material. It is, therefore, vital to understand which properties are dependent and which properties are independent of the rotation of the principal axes of the stress tensor relative to the material. In the present paper, a new multistage SPD process is designed such that the principal stress axes do not rotate relative to the material during each stage of the process but the directions of the major and minor principal stresses interchange between two subsequent stages. The process is practically plane strain, and it may be named the process of upsetting by V-shape dies. In addition, axisymmetric compression by Rastegaev's method is conducted. In this case, the principal stress axes are fixed in the material throughout the entire process of deformation. Material properties and microstructure generated in the two processes above are compared to reveal the effect of the rotation of the principal stress axes relative to the material on the evolution of these properties.With the popularity of the health and wellness trend in recent years, smartphone fitness applications have become more and more popular. Thus, this study explored factors affecting the behavioral intention to use and the actual usage behavior of smartphone fitness apps from technical, health, and social perspectives by integrating the Social Cognitive Theory (SCT) and Unified Theory of Acceptance and Use of Technology (UTAUT). We examined whether perceived usefulness, perceived ease-of-use, social influence, self-efficacy, goal-setting, and self-monitoring predict usage behavior. Based on the survey responses of 1066 smartphone fitness apps users, we revealed that all of the variables, except for self-monitoring, significantly influence usage behavior, while behavioral intention acts as a total mediator between perceived usefulness, perceived ease-of-use and usage behavior. Drawing on the research findings, we suggest that influencing behavioral intention to use a fitness app can be an effective method to increase its adoption. Therefore, app developers need to pay attention to interventions that seek to enhance the usefulness of the app, provide professional counseling, as well as an opportunity for effortless goal setting features.This study aims to use dispersion-modeled concentrations of nitrogen oxides (NOx) and black carbon (BC) to estimate bicyclist exposures along a network of roads and bicycle paths. Such modeling was also performed in a scenario with increased bicycling. Accumulated concentrations between home and work were thereafter calculated for both bicyclists and drivers of cars. A transport model was used to estimate traffic volumes and current commuting preferences in Stockholm County. The study used individuals' home and work addresses, their age, sex, and an empirical model estimate of their expected physical capacity in order to establish realistic bicycle travel distances. If car commuters with estimated physical capacity to bicycle to their workplace within 30 min changed their mode of transport to bicycle, >110,000 additional bicyclists would be achieved. Time-weighted mean concentrations along paths were, among current bicyclists, reduced from 25.8 to 24.2 μg/m3 for NOx and 1.14 to 1.08 μg/m3 for BC. Among the additional bicyclists, the yearly mean NOx dose from commuting increased from 0.08 to 1.03 μg/m3. This would be expected to yearly cause 0.10 fewer deaths for current bicycling levels and 1.7 more deaths for additional bicycling. This increased air pollution impact is much smaller than the decrease in the total population.