Burnetteturner6079
Interferons (IFNs) are pleiotropic cytokines critical for regulation of epithelial cell functions and for immune system regulation. In cancer, IFNs contribute to tumor-intrinsic and -extrinsic mechanisms that determine the quality of antitumor immunity and response to immunotherapy. In this Review, we focus on the different types of tumor IFN sensitivity that determine dynamic tumor-immune interactions and their coevolution during cancer progression and metastasis. We extend the discussion to new evidence supporting immunotherapy-mediated immunoediting and the dual opposing roles of IFNs that lead to immune checkpoint blockade response or resistance. Understanding the intricate dynamic responses to IFN will lead to novel immunotherapeutic strategies to circumvent protumorigenic effects of IFN while exploiting IFN-mediated antitumor immunity.The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/β induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-β protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-β secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. read more Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-β immunity.Dietary modification is central to obesity treatment. Weight loss diets are available that include various permutations of energy restriction, macronutrients, foods, and dietary intake patterns. Caloric restriction is the common pathway for weight reduction, but different diets may induce weight loss by varied additional mechanisms, including by facilitating dietary adherence. This narrative Review of meta-analyses and select clinical trials found that lower-calorie diets, compared with higher-calorie regimens, reliably induced larger short-term (12 months). Few significant long-term differences in weight loss were observed for diets of varying macronutrient composition, although some regimens were found to have short-term advantages (e.g., low carbohydrate versus low fat). Progress in improving dietary adherence, which is critical to both short- and long-term weight loss, could result from greater efforts to identify behavioral and metabolic phenotypes among dieters.The bromodomain and extra-terminal domain (BET) proteins are promising therapeutic targets to treat refractory solid tumors; however, inherent resistance remains a major challenge in the clinic. Recently, the emerging role of the oncoprotein B cell lymphoma 6 (BCL6) in tumorigenesis and stress response has been unveiled. Here, we demonstrate that BCL6 was upregulated upon BET inhibition in KRAS-mutant cancers, including non-small-cell lung cancer (NSCLC). We further found that BRD3, not BRD2 or BRD4, directly interacted with BCL6 and maintained the negative autoregulatory circuit of BCL6. Disrupting this negative autoregulation by BET inhibitors (BETi) resulted in a striking increase in BCL6 transcription, which further activated the mTOR signaling pathway through repression of the tumor suppressor death-associated protein kinase 2. Importantly, pharmacological inhibition of either BCL6 or mTOR improved the tumor response and enhanced the sensitivity of KRAS-mutant NSCLC to BETi in both in vitro and in vivo settings. Overall, our findings identify a mechanism of BRD3-mediated BCL6 autoregulation and further develop an effective combinatorial strategy to circumvent BETi resistance in KRAS-driven NSCLC.2021 to 2022 marks the one hundredth anniversary of ground-breaking research in Toronto that changed the course of what was, then, a universally fatal disease type 1 diabetes. Some would argue that insulin's discovery by Banting, Best, Macleod, and Collip was the greatest scientific advance of the 20th century, being one of the first instances in which modern medical science was able to provide lifesaving therapy. As with all scientific discoveries, the work in Toronto built upon important advances of many researchers over the preceding decades. Furthermore, the Toronto work ushered in a century of discovery of the purification, isolation, structural characterization, and genetic sequencing of insulin, all of which influenced ongoing improvements in therapeutic insulin formulations. Here we discuss the body of knowledge prior to 1921 localizing insulin to the pancreas and establishing insulin's role in glucoregulation, and provide our views as to why researchers in Toronto ultimately achieved the purification of pancreatic extracts as a therapy.