Burkeroed0513
The effect of diet on the composition of gut microbiota and the consequent impact on disease risk have been of expanding interest. The present review focuses on current insights of changes associated with dietary protein-induced gut microbial populations and examines their potential roles in the metabolism, health, and disease of animals. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was used, and 29 highly relevant articles were obtained, which included 6 mouse studies, 7 pig studies, 15 rat studies, and 1 in vitro study. Analysis of these studies indicated that several factors, such as protein source, protein content, dietary composition (such as carbohydrate content), glycation of protein, processing factors, and protein oxidation, affect the digestibility and bioavailability of dietary proteins. These factors can influence protein fermentation, absorption, and functional properties in the gut and, consequently, impact the composition of gut microbiota and affect human health. While gut microbiota can release metabolites that can affect host physiology either positively or negatively, the selection of quality of protein and suitable food processing conditions are important to have a positive effect of dietary protein on gut microbiota and human health.Fetal growth restriction (FGR) has been linked to long-term neurocognitive impairment, especially in males. To determine possible underlying mechanisms, we examined hippocampal cellular composition and mTOR signaling of male rat FGR offspring during main brain growth and development (postnatal days (PND) 1 and 12). FGR was either induced by a low-protein diet throughout pregnancy, experimental placental insufficiency by bilateral uterine vessel ligation or intrauterine stress by "sham" operation. Offspring after unimpaired gestation served as common controls. Low-protein diet led to a reduced cell density in the molecular dentate gyrus subregion, while intrauterine surgical stress was associated with increased cell density in the cellular CA2 subregion. Experimental placental insufficiency caused increased mTOR activation on PND 1, whereas intrauterine stress led to mTOR activation on PND 1 and 12. To determine long-term effects, we additionally examined mTOR signaling and Tau phosphorylation, which is altered in neurodegenerative diseases, on PND 180, but did not find any changes among the experimental groups. Our findings suggest that hippocampal cellular proliferation and mTOR signaling are dysregulated in different ways depending on the cause of FGR. While a low-protein diet induced a decreased cell density, prenatal surgical stress caused hyperproliferation, possibly via increased mTOR signaling.Iron deficiency in pregnancy is a major public health problem that causes maternal complications. The objective of this randomized, controlled trial was to examine the bioavailability, efficacy, and safety of oral ferrous bisglycinate plus folinic acid supplementation in pregnant women with iron deficiency. Subjects (12-16 weeks of gestation, n = 120) were randomly allocated to receive oral iron as ferrous bisglycinate (equiv. iron 24 mg) in supplement form with folinic acid and multivitamins (test group, n = 60) or as ferrous fumarate (equiv. iron 66 mg iron, control group, n = 60) after breakfast daily. Iron absorption was assessed by measuring fasted serum iron levels at 1 and 2 h immediately after supplementation. Hematological biomarkers and iron status were assessed before intervention, and at 3 and 6 months. Side effects were monitored throughout the intervention. A significant increase in serum iron was seen in both groups (p < 0.001) during the bioavailability assessment; however, the test group iregnancy, with comparatively better absorption, tolerability, and efficacy and with a lower elemental iron dosage.The perception of the body's internal state (interoception) and the perception and processing of environmental sensory stimuli (exteroception) act together to modulate adaptive behaviour, including eating behaviour, and are related to bodyweight control. This study evaluated the impact of the Food and Nutrition Education Program with Sensory and Cognitive Exercises on interoceptive sensitivity and on the expression of exteroceptive perception in women who experienced difficulty in controlling their body weight. Thirty-seven women were randomized into two groups and evaluated at two moments before and after the intervention or before and after a 3- to 4-week waiting period. A heartbeat tracking task was used for interoception evaluation. Participants were asked to write a text describing three foods after tasting them for exteroception evaluation. After the intervention, the participants showed an increase in interoceptive sensitivity, and an increase in the expression of exteroceptive stimuli perception through a semantic assessment of their writing related to the tasting experience. In addition, the results point to a possible connection between the mechanisms governing interoception and exteroception. This work brings important contributions to the search for strategies capable of promoting the perception and integration of physiological and environmental stimuli in food consumption.Changes in food preferences after bariatric surgery may alter its effectiveness as a treatment for obesity. We aimed to compare food reward for a comprehensive variety of food categories between patients who received a sleeve gastrectomy (SG) or a Roux-en-Y gastric bypass (RYGB) and to explore whether food reward differs according to weight loss. In this cross-sectional exploratory study, food reward was assessed using the Leeds Food Preference Questionnaire (LFPQ) in patients at 6, 12, or 24 months after SG or RYGB. We assessed the liking and wanting of 11 food categories. Comparisons were done regarding the type of surgery and total weight loss (TWL; based on tertile distribution). Fifty-six patients (30 SG and 26 RYGB) were included (women 70%; age 44.0 (11.1) y). Regarding the type of surgery, scores were not significantly different between SG and RYGB, except for 'non-dairy products-without color' explicit liking (p = 0.04). Regarding TWL outcomes, explicit liking, explicit wanting, and implicit wanting, scores were significantly higher for good responders than low responders for 'No meat-High fat' (post-hoc corrected p-value 0.04, 0.03, and 0.04, respectively). Together, our results failed to identify major differences in liking and wanting between the types of surgery and tended to indicate that higher weight loss might be related to a higher reward for high protein-content food. Rather focus only on palatable foods, future studies should also consider a broader range of food items, including protein reward.Quinoa (Chenopodium quinoa Willd.), a gluten-free pseudo-cereal, has gained popularity over the last decade due to its high nutritional value. Quinoa is a rich source of proteins, carbohydrates, fibers, tocopherols (Vitamin E), unsaturated fatty acids and a wide range of polyphenols. The study used Gallus gallus intra-amniotic feeding, a clinically validated method, to assess the effects of quinoa soluble fiber (QSF) and quercetin 3-glucoside (Q3G) versus control. Quercetin is a pharmacologically active polyphenol found in quinoa. Six groups (no injection, 18 Ω H2O, 5% inulin, 1% Q3G, 5% QSF, 1% Q3G + 5% QSF) were assessed for their effect on the brush border membrane (BBM) functionality, intestinal morphology and cecal bacterial populations. Our results showed a significant (p < 0.05) improvement in BBM morphology, particularly goblet and Paneth cell numbers, in the group administered with quinoa and quercetin. However, there were no significant changes seen in the expression of the genes assessed both in the duodenum and liver between any of the treatment groups. selleck compound Furthermore, fibrous quinoa increased the concentration of probiotic L. plantarum populations compared to the control (H2O). In conclusion, quercetin and quinoa fiber consumption has the potential to improve intestinal morphology and modulate the microbiome.
Low vitamin D in pregnancy may impair the development of the fetal immune system and influence the risk of later development of rheumatoid arthritis (RA) in the offspring. The aim was to examine whether lower 25-hydroxyvitamin D3 (25(OH)D) concentrations at birth were associated with the risk of developing RA in early adulthood.
This case-cohort study obtained data from Danish registers and biobanks. Cases included all individuals born during 1981-1996 and recorded in the Danish National Patient Register with a diagnosis of RA with age >18 years at first admission. The random comparison consisted of a subset of Danish children. Vitamin D concentrations were measured in newborn dried blood. In total, 805 RA cases and 2416 individuals from the subcohort were included in the final analysis. Weighted Cox regression was used to calculate hazard ratio (HR).
The median (interquartile rage (IQR)) 25(OH)D concentrations among cases were 24.9 nmol/L (IQR15.4;36.9) and 23.9 nmol/L (IQR13.6;36.4) among the subcohort. There was no indication of a lower risk of RA among individuals in the highest vitamin D quintile compared with the lowest (HRadj.1.21 (0.90;1.63)).
The risk of RA in early adulthood was not associated with vitamin D concentrations at birth.
The risk of RA in early adulthood was not associated with vitamin D concentrations at birth.This study examined the anti-obesity effects of a Phyllostachys pubescens (leaf) and Scutellaria baicalensis root mixture (BS21), and its underlying mechanisms of action, in high-fat diet (HFD)-induced obese mice. Mice were fed a HFD with BS21 (100, 200, or 400 mg/kg) for 9 weeks. BS21 reduced body weight, white adipose tissue (WAT) and liver weights, liver lipid accumulation, and adipocyte size. Additionally, BS21 reduced serum concentrations of non-esterified fatty acid, triglyceride, glucose, lactate dehydrogenase, low-density lipoprotein cholesterol, total cholesterol, leptin, and insulin growth factor 1, but elevated the adiponectin concentrations. Furthermore, BS21 suppressed the mRNA levels of lipogenesis-related proteins, such as peroxisome proliferator-activated receptor (PPAR) γ, SREBP-1c, C/EBP-α, fatty acid synthase, and leptin, but increased the mRNA gene expression of lipolysis-related proteins, such as PPAR-α, uncoupling protein (UCP) 2, adiponectin, and CPT1b, in WAT. In addition, BS21 increased the cold-stimulated adaptive thermogenesis and UCP1 protein expression with AMPK activation in adipose tissue. Furthermore, BS21 increased the WAT and mRNA expression of energy metabolism-related proteins SIRT1, PGC-1α, and FNDC5/irisin in the quadriceps femoris muscle. These results suggest that BS21 exerts anti-obesity and antihyperlipidemic activities in HFD-induced obese mice by increasing the thermogenesis and energy expenditure, and regulating lipid metabolism. Therefore, BS21 could be useful for preventing and treating obesity and its related metabolic diseases.The Multiple Source Method (MSM) and the National Cancer Institute (NCI) method are used to estimate usual dietary intake from short-term dietary assessment instruments, such as 24 hour dietary recall (24-HRs). However, their performance has not been validated in the Chinese population via nutrition surveys. To validate the accuracy of the MSM and NCI method in estimating usual dietary intake in the Chinese population, 752 individuals from northern and southern China answered four seasons of seven consecutive 24-HRs (one for each season). The true usual dietary intake was considered as the average of the 28 collection days of dietary component intake. Using data sets with consecutive 3 collection days, the usual intakes of the selected dietary components were estimated by MSM, NCI and the within-person mean of three 24-HRs (3 day method). These estimates were compared with the true usual intake at the group and individual level. At the group level, the MSM and NCI method performed similarly, yielding estimates closer to the true usual intake than 3 day method.