Bullardpowell9169

Z Iurium Wiki

An optosensor using nanocomposite probes was fabricated for the detection of trace cefazolin. The nanoprobes utilized the high affinity of titanium dioxide, the good optical properties of graphene quantum dots and the good selectivity of molecularly imprinted polymer. The integration of these materials produced a rapid, highly sensitive optosensor with excellent selectivity for cefazolin detection. The fluorescence intensity of the nanocomposite probes was quenched when cefazolin re-bound with the imprinted recognition cavities of the nanoprobes. The fabricated nanoprobe exhibited a good linearity for cefazolin from 0.10 to 10.0 μg L-1 with a limit of detection of 0.10 μg L-1. selleck chemicals The imprinting factor of the nanoprobe was 10.6 and selectivity for cefazolin was not affected by the analogue structures of cephalexin, cefatriaxone, cephradine, cefaperazone and ceftazidime. This nano-optosensor probe successfully detected cefazolin in milk and recoveries were between 85.0 and 97.4 % with RSDs less than 5.0 %. The results of analysis with nano-optosensor were in good agreement with HPLC analysis. The fabrication strategy of the nanocomposite probe can be modified for the measurement of other toxic compounds.Mycoleptodiscin B is a natural product extracted from the endophytic fungus Mycoleptodiscus sp. found in Sri Lanka and Panama with experimentally unexplored activities for human targets. In this study, a computational methodology was applied to determine druggable targets of mycoleptodiscin B. According to the computational toxicity and pharmacokinetics assessment, mycoleptodiscin B was proven to be a suitable drug candidate. Druggable targets for this compound, aromatase, acidic plasma glycoprotein and androgen receptor, were predicted using reverse docking. A two-step validation of those targets was performed using conventional molecular docking and molecular dynamic (MD) simulations, resulting in aromatase being determined as the potential therapeutic target. Based on molecular mechanics/Generalized Born Surface Area (GBSA) free energies and ligand stability inside the active site cavity during its 120 ns MD run, it can be concluded that mycoleptodiscin B is a potent aromatase inhibitor and could be subjected to further in vitro and in vivo experiments in the drug development pipeline. Consequently, natural product chemists can quickly identify the hidden medicinal properties of their miracle compounds using the computational approach applied in this research.10-Hexylphenoxazine based dyes with A-(π)n-D-(π)n-A architecture is designed and investigated systematically for dye-sensitized solar cell (DSSC) application by Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TD-DFT). The designed sensitizers consist of 10-Hexylphenoxazine as electron donor and cyanoacrylic acid as an acceptor, connected by the Thiophene and Cyanovinyl π-spacers configurations with symmetrical and asymmetrical form. The effect of π-spacers configurations on the electronic and optical properties of the dyes is also investigated. The optimized structure, electronic properties and absorption characteristics of A-(π)n-D-(π)n-A dyes were investigated. The charge separation and polarization properties are analyzed by co-planarity, natural bond orbital (NBO), dipole moment and linear polarizability studies. The free energy change of electron injection and dye regeneration of the sensitizers are also calculated. The addition of a greater number of π-spacers improves the electronic, spectroscopic, optical, and free energy properties of the designed sensitizer. The DFT studies also reveal that the position of the π-spacers plays an important role in the electronic and spectroscopic properties.Formaldehyde (CH2O) properties such as flash point and autoignition temperature have a great effect on the temperature range of sensitivity of sensors applied to detect CH2O gas. Tin dioxide nanocrystal interaction with formaldehyde is investigated from room temperature to 500 °C using transition state and density functional theory. Gibbs free energy, enthalpy, and entropy of activation and reaction are evaluated as a function of temperature. The sensitivity and response time of SnO2 clusters towards formaldehyde are evaluated. Results show that the activation energy of SnO2 clusters with formaldehyde increases with the rise of temperature while the reaction energy decreases (in negative value) with the rise of temperature. Response time is inversely proportional to formaldehyde concentration. The highest CH2O gas-sensitive range of SnO2 is confined between the formaldehyde flash point at 64 °C and the autoignition temperature at 430 °C. The effect of partial oxidation and dissociation of formaldehyde is discussed.Conotoxins are a group of cysteine-rich, neurotoxic peptides isolated from the venom of marine cone snails. MfVIA is a member of the μO-conotoxin family, and acts as an inhibitor of subtype 1.8 voltage-gated sodium ion channels (NaV1.8). The unique selectivity of MfVIA as an inhibitor of NaV1.8 makes it an ideal peptide for elucidation of the physiological functions of this voltage-gated ion channel. Previous experimental studies of point mutations of MfVIA showed that the double mutant [E5K,E8K] exhibited greater activity at NaV1.8 relative to the wild-type toxin. The present study employs molecular dynamics (MD) simulations to examine the effects of various mutations at these key residues (E5 and E8) on the structure and dynamics of MfVIA. Five double mutants were studied, in which the positions 5 and 8 residues were mutated to amino acids with a range of different physicochemical properties, namely [E5A,E8A], [E5D,E8D], [E5F,E8F], [E5K,E8K], and [E5R,E8R]. Except for [E5D,E8D], all of the mutants tend to show decreased contacts at the N-terminus owing to the loss of the R1-E5 salt bridge relative to that of the wild-type, which subsequently lead to greater exposure and flexibility of the N-terminus for most of the mutant peptides studied, potentially rendering them more able to interact with other species, including NaV1.8. Molecular docking studies of the peptides to NaV1.8 via different binding mechanisms suggest that the [E5R, E8R] mutant may be especially worthy of further investigation owing to its predicted binding mode, which differs markedly from those of the other peptides in this study.

Autoři článku: Bullardpowell9169 (Ellison Kofod)