Bullardfranck0226
Surface-enhanced Raman scattering (SERS) is a widely used technique for drug detection due to high sensitivity and molecular specificity. The applicability and selectivity of SERS in the detection of specific drug molecules can be improved by gathering information on the specific interactions occurring between the molecule and the metal surface. In this work, multilayer gold-silver bimetallic nanorods (Au@Ag@AuNRs) have been prepared and used as platforms for SERS detection of specific drugs (namely promethazine, piroxicam, furosemide and diclofenac). The analysis of SERS spectra provided accurate information on the molecular location upon binding and gave some insight into molecule-surface interactions and selectivity in drug detection through SERS.(1) Background Gangliogliomas comprise a small number of brain tumors. They usually present as World Health Organization (WHO) grade I, and they delineate on gadolinium-enhanced MRI; the surgical goal is wide radical resection, and the course thereafter is usually benign. Fluorescein sodium (FL) tends to accumulate in areas with altered blood-brain barrier (BBB). Thus far, the results provided by prospective and retrospective studies show that the utilization of this fluorophore may be associated with better visualization and improvement of resection for several tumors of the central nervous system. In this study, we retrospectively studied the effect of fluorescein sodium on visualization and resection of gangliogliomas. (2) Methods Surgical databases in three neurosurgical departments (Regensburg University Hospital; Besta Institute, Milano, Italy; and Liv Hospital, Istanbul, Turkey), with approval by the local ethics committee, were retrospectively reviewed to find gangliogliomas surgically removed by a fl eligible, gross total resection (GTR) was achieved in 12 out of 16 (75%) instances. (4) Conclusions The use of FL and YE560 is a readily available method for safe fluorescence-guided tumor resection, possibly visualizing tumor margins intraoperatively similar to contrast enhancement in T1-weighted MRI. Our data suggested a positive effect of fluorescein-guided surgery on intraoperative visualization and extent of resection during resection of gangliogliomas.In this study, the welded joints of dissimilar titanium alloys Ti600/Ti-22Al-25Nb were strengthened by isothermal forging. Different deformation parameters, including temperature, deformation speed, and reduction, were chosen. By isothermal forging, the original coarse dendritic grains of the welded joints were broken up effectively to form a large number of equiaxed grains. Meanwhile, many second phases were precipitated in the grain. Additionally, the dynamic globularization kinetics of second phases within the welded joints were quantitatively characterized and investigated. The results showed that the dynamic globularization kinetics and globularization rate were sensitive to the deformation conditions, and were promoted by a reduced strain rate and an elevated deformation temperature.Block copolymers have attracted significant scientific and economic interest over the last decades due to their ability to self-assemble into ordered structures both in bulk and in selective solvents. In this work, the self-assembly behaviour of both linear (diblocks, triblocks and pentablocks) and nonlinear (miktoarm stars and a block-graft) copolymers based on poly(n-hexyl isocyanate), PHIC, were studied in selective solvents such as n-heptane and n-dodecane. A variety of experimental techniques, namely static and dynamic light scattering, dilute solution viscometry and atomic force microscopy, were employed to study the micellar structural parameters (e.g., aggregation number, overall micellar size and shape, and core and shell dimensions). The effect of the macromolecular architecture, the molecular weight and the copolymer composition on the self-assembly behaviour was studied. Spherical micelles in equilibrium with clusters were obtained from the block copolymers. Thermally stable, uniform and spherical aggregates were found from the triblock copolymers. The poly(n-hexyl isocyanate)-b-polyisoprene-b-poly(n-hexyl isocyanate),-HIH copolymers tend to adopt closed loop conformation, leading to more elongated cylindrical-type structures upon increasing the concentration. GPNA in vivo Clustering effects were also reported in the case of the pentablock terpolymers. The topology of the blocks plays an important role, since the poly(n-hexyl isocyanate)-b-polystyrene-b-polyisoprene-b-polystyrene-b-poly(n-hexyl isocyanate), HSISH terpolymer shows intermicellar fusion of spherical micelles, leading to the formation of extended networks. The formation of spherical micelles in equilibrium with clusters was obvious in the case of the miktoarm stars, whereas the block-graft copolymer shows the existence of mainly unimolecular micelles.Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation of l-Ile by the dioxygenase IDO with 2-KG generation from readily available l-Glu by l-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H2O2 significantly inhibited IDO activity and elevated Fe2+ concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containing l-amino acids to yield l-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentiful l-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.