Buggemcclanahan1162
Asymmetries in bilateral organisms attract a lot of curiosity given that they are conspicuous departures from the norm. selleck chemicals llc They allow the investigation of the integration at different levels of biological organization. Here we study whether and how behavioral and asymmetrical anatomical traits co-evolved and work together. We ask if asymmetry is determined locally for each trait or at a whole individual level in a species bearing conspicuous asymmetrical genitalia. Asymmetric genitalia evolved in many species; however, in most cases the direction of asymmetry is fixed. Therefore, it has been rarely determined if there is an association between the direction of asymmetry in genitalia and other traits. In onesided livebearer fish of the genus Jenynsia (Cyprinodontiformes, Anablepidae), the anal fin of males is modified into a gonopodium, an intromittent organ that serves to inseminate females. The gonopodium shows a conspicuous asymmetry, with its tip bending either to the left or the right. By surveying 13 natural populations of Jenynsia lineata, we found that both genital morphs are equally common in wild populations. In a series of experiments in a laboratory population, we discovered asymmetry and lateralization for multiple other traits; yet, the degree of integration varied highly among them. Lateralization in exploratory behavior in response to different stimuli was not associated with genital morphology. Interestingly, the direction of genital asymmetry was positively correlated with sidedness of mating preference and the number of neuromasts in the lateral line. This suggests integration of functionally linked asymmetric traits; however, there is no evidence that asymmetry is determined at the whole individual level in our study species.Animals living around people may modify their antipredator behavior as a function of proximity to humans, and this response has profound implications for whether or not a population can coexist with humans. We asked whether inland blue-tailed skinks Emoia impar modified their individual antipredator behavior as a function of differential exposure to humans. We conducted multiple consecutive flushes and recorded 2 measures of antipredator response flight initiation distance (FID), the distance from a threatening stimulus at which an individual flees, and distance fled, the distance an individual fled after a flush. We used a multiple model comparison approach to quantify variation in individual escape behavior across multiple approaches and to test for differences in between-individual variation among populations. We found that individuals tolerated closer approach and fled shorter distances at locations with relatively less human disturbance than at locations with medium and high human disturbance, respectively. In addition, skinks living at high human disturbance sites had less variable FIDs than at low human disturbance sites. Two theories may explain these results. Selection against less favorable phenotypes has reduced behavioral variation in urban habitats and behavioral plasticity allows individuals to flexibly adjust their behavioral patterns in response to human disturbance. These results highlight the importance of studying variation within populations, at the individual level, which may better elucidate the impact that human disturbance has on the behavioral composition of populations.The effects of the variability of individual prey locomotory performance on the vulnerability to predation are poorly understood, partly because individual performance is difficult to determine in natural habitats. To gain insights into the role(s) of individual variation in predatory relationships, we study a convenient model system, the neotropical sandy beach gastropod Olivella semistriata and its main predator, the carnivorous snail Agaronia propatula. The largest size class of O. semistriata is known to be missing from A. propatula's spectrum of subdued prey, although the predator regularly captures much larger individuals of other taxa. To resolve this conundrum, we analyzed predation attempts in the wild. While A. propatula attacked O. semistriata of all sizes, large prey specimens usually escaped by 'sculling', an accelerated, stepping mode of locomotion. Olivella semistriata performed sculling locomotion regardless of size, but sculling velocities determined in the natural environment increased strongly with size. Thus, growth in size as such does not establish a prey size refuge in which O. semistriata is safe from predation. Rather, a behaviorally mediated size refuge is created through the size-dependence of sculling performance. Taken together, this work presents a rare quantitative characterization in the natural habitat of the causal sequence from the size-dependence of individual performance, to the prey size-dependent outcome of predation attempts, to the size bias in the predator's prey spectrum.It has been taken for granted that feeding guilds and behavior in animals are linked to the taxonomic relatedness of species, but empirical evidence supporting such relationship is virtually missing. To examine the importance of taxonomy on trophic ecology, I here present the first well-resolved dietary taxonomy analysis based on feeding guilds (predation, herbivory, and filtering) among families and genera within the fish order Perciformes. Taxonomic relatedness in feeding did not vary with ecosystem dimension (marine vs. freshwater). Although predation dominates among Perciformes fishes, this study shows that in most cases taxonomic units (family or genus) are composed by species with several feeding guilds. Related species are more similar in feeding compared with species that are taxonomically more distant, demonstrating that there is a greater variation of feeding guilds within families than genera. Thus, there is no consistency in feeding guilds between family- and genus-level taxonomy. This study provides empirical support for the notion that genera are more informative than families, underlining that family-level taxonomy should be avoided to infer feeding habits of fish species at finer taxonomic resolution. Thus, the choice of taxonomic resolution (family or genus level) in ecological studies is key to avoid information loss and misleading results. I conclude that high-rank taxonomic units (i.e., above the generic level) are not appropriate to test research hypotheses about the feeding of fish.