Bucksejersen0238
The effect of mineral dust aerosols and subsequent deposition in polar regions has historically been underestimated in climate models. Dust aerosols increase melt rates by reducing surface albedo and modifying atmospheric radiative properties. In this study 127,413 satellite images covering the Arctic and Antarctic from 2007 to 2019 were assessed for dust content using thermal infrared wavelengths. The results show a strong linear trend in which the relative spatial extent of dust (RSED) increased annually by 0.31% in the Arctic (8.5% to 12.1%) and 0.19% in the Antarctic (5.2% to 7.5%). Seasonally, the maximum aggregated average RSED occurred in the Arctic during boreal winter (11.2%), while the Antarctic peaked in austral spring (9.5%). Maximum RSED rates occurred in boreal winter/austral summer (Dec-Jan-Feb) for both polar regions. The data suggests that finer dust particles are more efficiently distributed by aeolian processes leading to higher RSED values that are not necessarily reflective of polar dust loading models.Currently, there is no appropriate treatment option for patients with sorafenib-resistant hepatocellular carcinoma (HCC). Meanwhile, pronounced anticancer activities of newly-developed mitochondria-accumulating self-assembly peptides (Mito-FF) have been demonstrated. This study intended to determine the anticancer effects of Mito-FF against sorafenib-resistant Huh7 (Huh7-R) cells. Compared to sorafenib, Mito-FF led to the generation of relatively higher amounts of mitochondrial reactive oxygen species (ROS) as well as the greater reduction in the expression of antioxidant enzymes (P less then 0.05). Mito-FF was found to significantly promote cell apoptosis while inhibiting cell proliferation of Huh7-R cells. Mito-FF also reduces the expression of antioxidant enzymes while significantly increasing mitochondrial ROS in Huh7-R cells. The pro-apoptotic effect of Mito-FFs for Huh7-R cells is possibly caused by their up-regulation of mitochondrial ROS, which is caused by the destruction of the mitochondria of HCC cells.Transformation acoustics, as an unconventional theory, provides a powerful tool to design various kinds of acoustic devices with excellent functionalities. However, the required ideal parameters, which are prescribed by the method, are both complex and hard to implement-even using acoustic metamaterials. Furthermore, simplified parameter materials are generally favored in transformation-acoustic design due to its easier realization with artificial structures. In this letter, we propose a coordinate transformation methodology for achieving simplified parameters by tuning the impedance distribution in the geometric limit, where the transformation media parameters can be derived by setting tunable impedance functions in the original space and a combination of suitable linear or nonlinear coordinate transformation. Based on this approach, both two-dimensional acoustic cloak and concentrators are designed with different sets of simplified parameters. Numerical simulations indicate good performance of these devices with minimized scattering at higher frequencies. The proposed method provides more opportunities to realize the designed acoustic devices experimentally, and can also be used for other transformation-acoustic designs including 3D cases.This study investigated the ultrafiltration (UF) membrane fouling mechanism of intracellular organic matter (IOM) from Chlorella vulgaris (CV) and Microcystis aeruginosa (MA). Both CV- and MA-IOM caused severe membrane fouling during UF; however, there were significant differences in the membrane fouling by these two materials. Neutral hydrophilic (N-HPI) compounds were the organics that caused the most severe membrane fouling during CV-IOM filtration, whereas the MA-IOM membrane fouling was induced by mainly hydrophobic (HPO) organics. From an analysis based on Derjaguin-Landau-Verwey-Overbeek theory, it was found that the interaction energy between the membrane and foulants in the later stage of filtration was the major factor determining the efficiency of filtration for both CV-IOM and MA-IOM. The TPI organics in CV-IOM fouled the membrane to a more severe degree during the initial filtration flux; however, when the membrane surface was covered with CV-IOM foulants, the N-HPI fraction of CV-IOM caused the most severe membrane fouling because its attractive energy with the membrane was the highest. For MA-IOM, regardless of the initial filtration flux or the late stage of filtration, the HPO organics fouled the membrane to the greatest extent. An analysis of modified filtration models revealed that cake layer formation played a more important role than other fouling mechanisms during the filtration of CV-IOM and MA-IOM. This study provides a significant understanding of the membrane fouling mechanism of IOM and is beneficial for developing some strategies for membrane fouling control when treating MA and CV algae-laden waters.Biting midges are widespread around the world and play an essential role in the epidemiology of over 100 veterinary and medical diseases. For taxonomists, it is difficult to correctly identify species because of affinities among cryptic species and species complexes. In this study, species boundaries were examined for C. clastrieri and C. festivipennis and compared with six other Culicoides species. The classifiers are partial least squares discriminant analysis (PLS-DA) and sparse partial least squares discriminant analysis (sPLS-DA).The performance of the proposed method was evaluated using four models (i) geometric morphometrics applied to wings; (ii) morphological wing characters, (iii) "Full wing" (landmarks and morphological characters) and (iv) "Full model" (morphological characters-wing, head, abdomen, legs-and wing landmarks). Double cross-validation procedures were used to validate the predictive ability of PLS-DA and sPLS-DA models. The AUC (area under the ROC curve) and the balanced error rate showed that the sPLS-DA model performs better than the PLS-DA model. Our final sPLS-DA analysis on the full wing and full model, with nine and seven components respectively, managed to perfectly classify our specimens. BC-2059 purchase The C. clastrieri and C. festivipennis sequences, containing both COI and 28S genes, revealed our markers' weak discrimination power, with an intraspecific and interspecific divergence of 0.4% and 0.1% respectively. Moreover, C. clastrieri and C. festivipennis are grouped in the same clade. The morphology and wing patterns of C. clastrieri and C. festivipennis can be used to clearly distinguish them. Our study confirms C. clastrieri and C. festivipennis as two distinct species. Our results show that caution should be applied when relying solely on DNA barcodes for species identification or discovery.