Bucknersutton4639

Z Iurium Wiki

The aim of the study is to improve the performance of thin-film composite (TFC) membranes with a thin selective layer based on chitosan (CS) via different approaches by (1) varying the concentration of the CS solution; (2) changing the porosity of substrates from polyacrylonitrile (PAN); (3) deposition of the additional ultrathin layers on the surface of the selective CS layer using interfacial polymerization and layer-by-layer assembly. The developed membranes were characterized by different methods of analyses (SEM and AFM, IR spectroscopy, measuring of water contact angles and porosity). The transport characteristics of the developed TFC membranes were studied in pervaporation separation of isopropanol/water mixtures. It was found that the application of the most porous PAN-4 substrate with combination of formation of an additional polyamide selective layer by interfacial polymerization on the surface of a dense selective CS layer with the subsequent layer-by-layer deposition of five bilayers of poly (sodium 4-styrenesulfonate)/CS polyelectrolyte pair led to the significant improvement of permeance and high selectivity for the entire concentration feed range. Thus, for TFC membrane on the PAN-4 substrate the optimal transport characteristics in pervaporation dehydration of isopropanol (12-90 wt.% water) were achieved 0.22-1.30 kg/(m2h), 99.9 wt.% water in the permeate.Surface segregation of the low molecular weight component of a polymeric mixture is a ubiquitous phenomenon that leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer-polymer ( O P ) and oligomer-gel ( O G ) systems following a temperature quench that induces demixing of components. We compute equilibrium and time varying migrant (oligomer) density profiles and wetting layer thickness in these systems using coarse grained molecular dynamics (CGMD) and mesoscale hydrodynamics (MH) simulations. Such multiscale methods quantitatively describe the phenomena over a wide range of length and time scales. We show that surface migration in gel-oligomer systems is significantly reduced on account of network elasticity. Furthermore, the phase separation processes are significantly slowed in gels leading to the modification of the well known Lifshitz-Slyozov-Wagner (LSW) law ℓ ( τ ) ∼ τ 1 / 3 . Epigenetic inhibitor datasheet Our work allows for rational design of polymer/gel-oligomer mixtures with predictable surface segregation characteristics that can be compared against experiments.The rise in the number of immunocompromised patients has led to an increased incidence of fungal infections, with high rates of morbidity and mortality. Furthermore, misuse of antifungals has boosted the number of resistant strains to these agents; thus, there is urgent need for new drugs against these infections. Here, the in vitro antifungal activity of filipin III metabolic intermediates has been characterized against a battery of opportunistic pathogenic fungi-Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, Trichosporon cutaneum, Trichosporon asahii, Aspergillus nidulans, Aspergillus niger, and Aspergillus fumigatus-using the Clinical and Laboratory Standards Institute broth microdilution method. Structural characterization of these compounds was undertaken by mass spectrometry (MS) and nuclear magnetic resonance (NMR) following HPLC purification. Complete NMR assignments were obtained for the first time for filipins I and II. In vitro haemolytic assays revealed that the haemolytic action of these compounds relies largely on the presence of a hydroxyl function at C26, since derivatives lacking such moiety show remarkably reduced activity. Two of these derivatives, 1'-hydroxyfilipin I and filipin I, show decreased toxicity towards cholesterol-containing membranes while retaining potent antifungal activity, and could constitute excellent leads for the development of efficient pharmaceuticals, particularly against Cryptococcosis.In non-small cell lung cancer (NSCLC) the usage of plasma-derived circulating tumor DNA (ctDNA) have come into focus to obtain a comprehensive genetic profile of a given lung cancer. Despite the usage of specific sampling tubes, archived plasma samples as well as inappropriately treated blood samples still cause a loss of information due to cell lysis and contamination with cellular DNA. Our aim was to establish a reliable protocol to rescue ctDNA from such non-informative samples to monitor the mutational landscape in NSCLC. As a proof-of-concept study we used archived plasma samples derived from whole blood EDTA samples of 51 patients suffering from NSCLC. Analysis of the isolated plasma DNA determined only a small fraction of ctDNA in a range of 90-250 bp. By applying a specific purification procedure, we were able to increase the informative ctDNA content and improve in a cohort of 42 patients the detection of driver mutations from 32% to 79% of the mutations found in tissue biopsies. Thus, we present here an easy to perform, time and cost effective procedure to rescue non-informative ctDNA samples, which is sufficient to detect oncogenic mutations in NGS approaches and is therefore a valuable technical improvement for laboratories handling liquid biopsy samples.Rotaviruses are the leading cause of viral gastroenteritis among children under five years of age. Rotavirus cell entry has been extensively studied; however, rotavirus cell release is still poorly understood. Specifically, the mechanism by which rotaviruses leave the cell before cell lysis is not known. Previous works have found rotavirus proteins and viral particles associated with extracellular vesicles secreted by cells. These vesicles have been shown to contain markers of exosomes; however, in a recent work they presented characteristics more typical of microparticles, and they were associated with an increase in the infectivity of the virus. In this work, we purified different types of vesicles from rotavirus-infected cells. We analyzed the association of virus with these vesicles and their possible role in promotion of rotavirus infection. We confirmed a non-lytic rotavirus release from the two cell lines tested, and observed a notable stimulation of vesicle secretion following rotavirus infection. A fraction of the secreted viral particles present in the cell supernatant was protected from protease treatment, possibly through its association with membranous vesicles; the more pronounced association of the virus was with fractions corresponding to cell membrane generated microvesicles.

Autoři článku: Bucknersutton4639 (Juel Guy)