Bucknerberg7483
Rhabdomyosarcoma of the cervix is among the rare histological types of cervical cancers, which are usually seen in young girls or women in the general active period. The usual circumstances of diagnosis are dominated by recurrent metrorrhagia. At the initial stage, the lesions may be asymptomatic or take on the appearance of a benign polyp. In the case reported here, the clinical symptomatology was recurrent metrorrhagia with a cervical implanted polyp occurring 28 months after resection of a benign polyp. RMS is one of the malignant tumors of mesenchymal origin. Typically, it is a malignant tumor proliferation of cells with morphological and/or phenotypic striated muscle differentiation. The characteristic cells of this tumor are rhabdomyoblasts rhabdomyosarcomas are classified into three histological subtypes embryonal, alveolar, and anaplastic. Within embryonal RMS, it is possible to distinguish between botryoid, leiomyomatous and anaplastic forms. Botryoid and leiomyomatous forms are classically described as having a more favorable prognosis. Treatment is based on a multidisciplinary approach that includes indications for conservative surgery, chemotherapy, radiotherapy and brachytherapy.
Coronary artery fistula (CAF) is an abnormal connection between coronary artery and a major vessel or cardiac chamber with left to right shunt having an incidence of 0.002% in recent literature. Fistulous communication of coronary artery with pulmonary artery (PA) is a rare subtype and comprises of about 17% of all the CAF cases.
We report a case of a middle-aged gentleman, known case of asymptomatic CAF for the last 20years. He presented to us with 6months history of chest pain on exertion. On coronory angiogram he was diagnosed to have a preexisting CAF of proximal LAD to main PA and severe coronary artery disease in left anterior descending coronary artery (LAD). He was managed surgically and underwent ligation of the fistula along with coronary artery bypass grafting (CABG).
Management of CAF is medical, percutaneous or open-heart surgery. Due to rarity of the disease no international guidelines exists and treatment is controversial. Complications of CAF include endocarditis, early atherosclerosis, rupture, hemopericardium, pulmonary hypertension and myocardial ischemia, hence early correction is warranted. Our case emphasizes on the natural course of this rare disease and how to change management plan accordingly in the better interest of patient.
Our case presents the natural course and management of a rare congenital cardiac disease. Surgery was chosen as an appropriate option due to CAD involving proximal LAD and concomitant coronary artery to PA fistula.
Our case presents the natural course and management of a rare congenital cardiac disease. https://www.selleckchem.com/products/nd646.html Surgery was chosen as an appropriate option due to CAD involving proximal LAD and concomitant coronary artery to PA fistula.Nano-Al2O3 has been widely used in various consumer products and water treatment processes because of its unique physicochemical properties. The probability of human exposure to nano-Al2O3 increases significantly, of which oral ingestion is an important route. However, effects and underlying mechanisms of nano-Al2O3 on gut microbiota and resistome are still not well delineated. Here, we systematically investigated the effects of nano-Al2O3 on the human gut microbiome by an in vitro simulator of human colon microbial ecosystem. Results indicated that nano-Al2O3 interfered with the gut microbiota, and significantly suppressed the short-chain fatty acids metabolism, which might pose adverse effects on the host. More seriously, high level of nano-Al2O3 (50 mg/L) was more destructive to the gut flora, though the damage might be temporary. In addition, sub-inhibitory low-dose of nano-Al2O3 (0.1 mg/L) significantly enhanced the abundance of antibiotic resistance genes (ARGs) after 7-day exposure. This is attributed to that low concentration of nano-Al2O3 can promote horizontal transfer of ARGs by increasing cell membrane permeability and relative abundance of transposase (e.g. tnpA, IS613, and Tp614). Our findings confirmed the adverse effects of nano-Al2O3 on the human gut resistome and emphasized the necessity to assess potential risks of nanomaterials on the human gut health.Indium released in agroecosystems is becoming an emerging plant stressor, causing cellular damage and consequently crop yield losses. Previous studies have focused on indium-induced toxicity in plants, while plant adaptive responses to such emerging metal xenobiotics are poorly understood. Here, we explored the relationship of autophagy and programmed cell death (PCD) in wheat roots under indium stress. Indium treatment significantly decreased root activity and cell viability, and suppressed the length of root epidermal cells in the elongation zones. These symptoms may be associated with indium-induced PCD, as indium-stressed wheat roots displayed condensed and granular nuclei, increased number of TUNEL-positive nuclei, enhanced nuclear DNA fragmentation and caspase-3-like protease activity compared to untreated roots. Accordingly, indium enhanced the expression levels of TaMCA1 and TaMCA4, two major metacaspase genes mediated PCD in wheat plants. The enhanced expression of autophagy genes and formation of autophagosomes indicate that autophagy could regulate metabolic adaptation and repair stress-induced damage in wheat roots. Furthermore, reinforcing autophagy by activator rapamycin significantly decreased the number of TUNEL-positive nuclei and the activity of caspase-3-like protease, whereas inhibition of autophagy by 3-methyladenine aggravated diagnostic markers for PCD. These results together suggest that autophagy suppresses indium-induced PCD in wheat roots.Simultaneous determination of 58 congeners of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), brominated polycyclic aromatic hydrocarbons (Br-PAHs), and polybrominated diphenyl ethers (PBDEs) from multiple stages of industrial-scale secondary copper smelting plants was conducted with the aim of understanding their variations and control. In addition to the historical manufacture of PBDEs as brominated flame retardants, this study confirmed that PBDEs can be unintentionally produced and released from the secondary copper industry. The average mass emission factors of PBDD/Fs, PBDEs, and Br-PAHs from different sources were 10.0, 5.21 × 103, and 7.24 × 103 μg t-1, respectively. Therefore, the emission of brominated persistent organic pollutants (POPs) in the secondary copper industry should be of concern. The concentration of brominated POPs increased from the gas cooling stage to stack outlet due to the possible "memory effect" and the regenerated POPs were mainly low-brominated homologs. A comparison of brominated POPs with corresponding chlorinated analogs in the same process indicated that the formation pathway of Br-PAHs was consistent with that of chlorinated PAHs. However, unlike chlorinated dioxins and furans, PBDD/Fs can also be formed from PBDEs as precursors, leading to obvious increases in highly brominated furans. Therefore, inhibiting the unintentional formation of PBDEs is important for controlling brominated POPs emissions.In recent years, many efforts have been made to modulate the interaction between carriers and nanoparticles under the integrity of the active site structure. Herein, SrFeO3 @CoSe2 nanocomposite was fabricated by loading CoSe2 onto SrFeO3 particles with a perovskite structure in the form of an encapsulation. The optimized SFO@CS-0.3 catalyst exhibited high catalytic activity in photo-peroxymonosulfate-based reaction and the catalyst was structurally stable over a wide temperature range. Characterization and theoretical results demonstrated that the charge in the SrFeO3 was transferred from Fe to Co cation of the CoSe2 via the interfacial oxygen atom. Moreover, the newly established oxygen-metal structure (Fe-Ov-Co) acted as a catalytic site, accelerating the cleavage of the peroxymonosulfate bond to generate radicals, which were desorbed into solution to attack the contaminant. Simultaneously, the heterojunction constructed by the catalyst underwent internal electron transfer under visible light, creating a field in which multiple reactive oxygen species co-oxidized organic contaminant.Sulfite has been used as a classic reductant for the dehalogenation and reduction of organic compounds for a long time, it is recently deemed as a promising alternative (for persulfate) to generate sulfate radical for wastewater treatment due to its low price and eco-toxicity. In contrast with the enormous work developed in the field of tetracycline (TC) degradation via PMS activization, sulfite activization could play a important role in TC degradation but there is only very few available reports in this area. Herein, the novel and efficient CoNHs nanocatalyst is designed and developed, via immobilization of hydrangea-shaped Co3O4 nanoparticles onto graphitic carbon nanosheet (GCN), for the degradation of tetracycline via sulfite activation. The detailed characterizations have confirmed that CoNHs possesses a nanohydrangea-shaped structure with high microporosity. The comparison with other supports (such as CeO2 and MoS2), CoNHs provides the highest degradation efficiency in TC degradation, due to the synergistic effect between Co3O4 and GCN. Free radical quenching experiments and EPR analysis confirm that SO4•- and O2•- are major reactive oxygen species in the CoNHs/sulfite system. This work could provide a simple, economical and durable cobalt-based catalyst for organic wastewater treatment via sulfite activation.Tailing disposal technologies such as dry and wet disposal methods have a profound effect on the ecosystem of mining areas. However, the chemical speciation of metal(loid)s and microbial community structure in tailings under different disposal methods are still poorly understood. Here we compared the bioavailable fraction of metal(loid)s and the microbial community in vanadium-titanium (V-Ti) magnetite tailing profiles derived from dry and wet stockpiled methods. In wet tailings, the bioavailability of Cr, Cu, Mn, Ni, V, and Zn was higher than that in dry tailings as identified by BCR sequential extraction. Especially for Cu and Ni, the oxidizable fraction was the predominant fraction except the residual fraction, accounting for 37.2-59.0% and 23.2-36.6% of the total concentration in wet tailings, respectively. Based on 16 S rRNA high-throughput sequencing, totally 12 indicator bacterial taxa were detected in dry tailings against 68 in wet tailings. As the biomarkers in wet tailings, genera Sulfuricurvum, Geobacter, and Pseudomonas were expected to be applied to the transformation of metal(loid)s in the tailings. Our results emphasize the importance of dehydration treatment of tailings before stockpiling to minimize the environmental risks caused by toxic metal(loid)s, and provide insights into the engineering application of microbial technologies in V-Ti magnetite tailing area.The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses.