Buckleyrosenkilde5780

Z Iurium Wiki

In this paper, a metasurface composed of 3-bit coding linear polarization conversion elements and its application to RCS reduction of the patch antenna is intensively studied. At first, 3-bit coding metasurface are constructed by a sequence of eight coded unit cells, which have a similar cross-polarized reflected amplitude response and gradient reflected phase responses covering 0-2π, respectively. Equivalent circuit models of these unit cells are created to describe their electrical behavior for the two linear incident polarizations at the same time. Then, a patch antenna is integrated on the 3-bit metasurface, of which the elements are placed with a 2-dimensional linear coding sequence. The metal square ring is set around the patch antenna to protect it from the disturbance of metasurface. Both the simulation and experiment results demonstrate that the designed metasurface can primarily reduce the antenna RCS at a broadband, while the antenna performances are not degraded significantly.Globally, wide-ranging carnivore populations are imperiled due to human-caused habitat fragmentation. Where populations are fragmented, habitat quantification is often the first step in conservation. Presence-only species distribution models can provide robust results when proper scales and data are considered. We aimed to identify habitat for a fragmented carnivore population at two scales and aid conservation prioritization by identifying potential future habitat fragmentation. We used location data and environmental variables to develop a consensus model using Maxent and Mahalanobis distance to identify black bear (Ursus americanus floridanus) habitat across Florida, USA. We compared areas of habitat to areas of predicted sea level rise, development, and protected areas. Local-scale models performed better than state-scale models. We identified 23,798 km2 of habitat at the local-scale and 45,703 km2 at the state-scale. Approximately 10% of state- and 14% of local-scale habitat may be inundated by 2100, 16% of state- and 7% of local-scale habitat may be developed, and 54% of state- and 15% of local-scale habitat is unprotected. Results suggest habitat is at risk of fragmentation. Lack of focused conservation and connectivity among bear subpopulations could further fragmentation, and ultimately threaten population stability as seen in other fragmented carnivore populations globally.Infections are most frequent at the extremes of life, especially among newborns, reflecting age-specific differences in immunity. Monocytes maintain tissue-homeostasis and defence-readiness by escaping circulation in the absence of inflammation to become tissue-resident antigen presenting cells in vivo. Despite equivalent circulating levels, neonates demonstrate lower presence of monocytes inside peripheral tissues as compared to adults. To study the ability of monocytes to undergo autonomous transendothelial extravasation under biologically accurate circumstances we engineered a three-dimensional human vascular-interstitial model including collagen, fibronectin, primary endothelial cells and autologous untreated plasma. This microphysiological tissue construct enabled age-specific autonomous extravasation of monocytes through a confluent human endothelium in the absence of exogenous chemokines and activation. Both CD16- and CD16+ newborn monocytes demonstrated lower adherence and extravasation as compared to adults. In contrast, pre-activated tissue constructs were colonized by newborn monocytes at the same frequency than adult monocytes, suggesting that neonatal monocytes are capable of colonizing inflamed tissues. The presence of autologous plasma neither improved newborn homeostatic extravasation nor shaped age-specific differences in endothelial cytokines that could account for this impairment. Newborn monocytes demonstrated significantly lower surface expression of CD31 and CD11b, and mechanistic experiments using blocking antibodies confirmed a functional role for CD31 and CD54 in neonatal homeostatic extravasation. Our data suggests that newborn monocytes are intrinsically impaired in extravasation through quiescent endothelia, a phenomenon that could contribute to the divergent immune responsiveness to vaccines and susceptibility to infection observed during early life.Theoretical works in social psychology and neuroscientific evidence have proposed that social rewards have intrinsic value, suggesting that people place a high premium on the ability to influence others. To test this hypothesis, we asked whether, and under what conditions, people are willing to forgo monetary reward for the sake of influencing others' decisions. In four experiments, online and lab-based participants competed with a rival for influence over a client. The majority of participants sacrificed some of their financial reward to increase their chance of being selected over their rival within the experiment. Willingness to pay was affected by the participant's current level of influence and performance, as participants were most likely to pay to promote their competence after having given good advice that had been ignored by the client using a situation where monetary incentives fail to explain human motivations, our experiments highlight the intrinsic value of social influence.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Humans make decisions under various natural circumstances, integrating multiple pieces of information that are distributed over space and time. Although psychophysical and physiological studies have investigated temporal dynamics underlying perceptual decision making, weighting profiles for inliers and outliers during temporal integration have yet to be fully investigated in most studies. Here, we examined the temporal weighting profile of a computational model characterized by a leaky integrator of sensory evidence. As a corollary of its leaky nature, the model predicts the recency effect and overweights outlying elements around the end of the stream. Moreover, we found that the model underweights outlying values occurring earlier in the stream (i.e., robust averaging). We also show that human observers exhibit exactly the same weighting profile in an average estimation task. These findings suggest that the adaptive decision process in the brain results in the time-dependent decision weighting, the "peak-at-end" rule, rather than the peak-end rule in behavioral economics.We demonstrate a compact picosecond master-oscillator power-amplifier (MOPA) system based on an Yb-doped polarization-maintaining double-clad tapered fiber (T-DCF) delivering pulses with over 1.26 MW peak power and average output power up to 200 W preserving near diffraction limited beam quality. The unique properties of an active tapered fiber enable to amplify the seed pulses directly with no need for applying of additional stretching technique. This simplified laser system can find the practical implementation in industrial micromachining.The most remarkable anatomical specialization of threadfins (Percomorphacea Polynemidae) is the division of their pectoral fin into an upper, unmodified fin and a lower portion with rays highly modified into specialized filaments. Such filaments are usually elongate, free from interradial membrane, and move independently from the unmodified fin to explore the environment. The evolution of the pectoral filaments involved several morphological modifications herein detailed for the first time. The posterior articular facet of the coracoid greatly expands anteroventrally during development. Similar expansions occur in pectoral radials 3 and 4, with the former usually acquiring indentations with the surrounding bones and losing association with both rays and filaments. Whereas most percomorphs typically have four or five muscles serving the pectoral fin, adult polynemids have up to 11 independent divisions in the intrinsic pectoral musculature. The main adductor and abductor muscles masses of the pectoral system are completely divided into two muscle segments, each independently serving the pectoral-fin rays (dorsally) and the pectoral filaments (ventrally). Based on the innervation pattern and the discovery of terminal buds in the external surface of the filaments, we demonstrate for the first time that the pectoral filaments of threadfins have both tactile and gustatory functions.Coral reefs have been subject to mass coral bleaching, potentially causing rapid and widespread degradation of ecosystem services that depend on live coral cover, such as fisheries catch. Fisheries species in tropical waters associate with a wide range of habitats, so assessing the dependency of fisheries on coral reefs is important for guiding fishery responses to coral reef degradation. This study aimed to determine how fisheries catches associate with coral reefs in Queensland, Australia. Queensland's largest fisheries did not target fish associated with reefs, but specific sectors, particularly aquarium fisheries and commercial fisheries in the mid to northern region had a high dependence on species that use coral reefs. Regions that had a greater relative area of coral reefs had higher catches of species that depend on live coral, suggesting that coral area could be used to predict the sensitivity of a jurisdiction's fisheries to bleaching. Dynamic analysis of stock trends found that coral trout and red throat emperor, the two largest species by catch for the reef line fishery, were at risk of overfishing if habitat loss caused declines in stock productivity. Management of fisheries that are highly dependent on reefs may need to adapt to declining productivity, but further research to support ongoing reforms in Queensland's fisheries is needed to quantitatively link reef degradation to stock production parameters is needed.Unraveling detailed mechanism of crystal nucleation from amorphous materials is challenging for both experimental and theoretical approaches. In this study, we have examined two methods to understand the initial stage of crystal precipitation from lithium disilicate glasses using molecular dynamics simulations. One of the methods is a modified exploring method to find structurally similar crystalline clusters in the glass models, enabling us to find three different embryos, such as Li2Si2O5 (LS2), Li2SiO3 (LS) and Li3PO4 (LP), in the 33Li2O·66SiO2·1P2O5 glass (LS2P1), in which P2O5 is added as a nucleating agent. Interestingly, LS2 and LP crystals were found inside the LS2P1 glass while LS crystal appeared on the glass surface, which agrees with experimental observations. The other method is free energy calculation using a subnano-scale spherical crystal embedded in the glass model. This method, which we called Free-Energy Seeding Method (FESM), allows us to evaluate free energy change as a function of crystal radius and to identify critical size of the crystal precipitation. The free energy profiles for LS and LS2 crystal nuclei in the LS2 glass models possess maximum energy at a critical radius as expected by classical nucleation theory. Furthermore, the critical radius and the energy barrier height agree well with recent experimental investigation, proving the applicability of this method to design glass-ceramics by atomistic modeling.

Autoři článku: Buckleyrosenkilde5780 (Martinsen Casey)