Buchananfalk0395

Z Iurium Wiki

The aim of this review was to provide a better comprehension between human nutrition and lipid metabolism.A large body of evidence demonstrates a relationship between hyperglycemia and increased concentrations of advanced glycation end-products (AGEs). However, there is little information about subcutaneous AGE accumulation in subjects with prediabetes, and whether or not this measurement could assist in the diagnosis of prediabetes is unclear. A cross-sectional study was conducted in 4181 middle-aged subjects without diabetes. Prediabetes (n = 1444) was defined as a glycosylated hemoglobin (HbA1c) level between 39 and 47 mmol/mol (5.7 to 6.4%), and skin autofluorescence (SAF) measurement was performed to assess AGEs. A multivariable logistic regression model and receiver operating characteristic curve were used. The cohort consisted of 50.1% women with an age of 57 [52;62] years, a BMI of 28.3 [25.4;31.6] kg/m2, and a prevalence of prediabetes of 34.5%. Participants with prediabetes showed higher SAF than control participants (2.0 [1.7;2.2] vs. 1.9 [1.7;2.2], p < 0.001). However, HbA1c was not significantly correlated with SAF levels (r = 0.026, p = 0.090). In addition, the SAF level was not independently associated with prediabetes (OR = 1.12 (0.96 to 1.30)). Finally, there was no good cutoff point for SAF to identify patients with prediabetes (AUC = 0.52 (0.50 to 0.54), sensitivity = 0.61, and 1-specificity = 0.56). Given all of this evidence, we can conclude that although there is an increase in SAF levels in participants with prediabetes, the applicability and clinical relevance of the results is low in this population.The study aims to examine the association of dietary intake of lignans with the risk of hip fractures in Chinese older adults. This was a 11 age- and gender- matched case-control study. Dietary survey was conducted by face-to-face interviews using a 79-item validated food frequency questionnaire. Habitual intake of total and individual lignans (matairesinol, secoisolariciresinol, pinoresinol, and lariciresinol) was estimated based on the available lignans databases. Conditional logistic regression was used to examine the relationship of dietary total and individual lignans, lignan-rich foods (vegetables, fruits, nuts, and cereals) and dietary fibers with the risk of hip fracture. A total of 1070 pairs of hip fracture incident cases and controls were recruited. Compared with the lowest quartile, the highest quartile group showed a reduced hip fracture risk by 76.3% (0.237, 95% CI 0.103-0.544, Ptrend < 0.001) for total lignans, and 62.5% (0.375, 95% CI 0.194-0.724, Ptrend = 0.001) for dietary fibers. Similar findings were observed for individual lignans, the estimated enterolactone level, as well as lignans from vegetables and nuts. We concluded that greater consumption of total and individual lignans, and lignan-rich foods were significantly associated with decreased risk of hip fracture.

Triple-negative breast cancer (TNBC) cells secretome induces a pro-inflammatory microenvironment within the adipose tissue, which hosts both mature adipocytes and adipose-derived mesenchymal stem/stromal cells (ADMSC). The subsequent acquisition of a cancer-associated adipocyte (CAA)-like phenotype is, however, unknown in ADMSC. While epidemiological studies suggest that consuming a polyphenol-rich diet reduces the incidence of some obesity-related cancers, the chemopreventive impact of green tea-derived epigallocatechin-3-gallate (EGCG) against the cues that trigger the CAA phenotype remain undocumented in ADMSC.

Human ADMSC were exposed to human TNBC-derived MDA-MB-231 conditioned media (TNBC cells secretome) supplemented or not with EGCG. Differential gene expression was assessed through RNA-Seq analysis and confirmed by RT-qPCR. Protein expression levels and the activation status of signal transduction pathways mediators were determined by Western blotting. ADMSC chemotaxis was assessed by a real-time cell migration assay.

The TNBC cells secretome induced in ADMSC the expression of the CAA cytokines CCL2, CCL5, IL-1β, and IL-6, and of immunomodulators COX2, HIF-1α, VEGFα, and PD-L1. The epithelial-to-mesenchymal biomarker Snail was found to control the CAA phenotype. EGCG inhibited the induction of CAA genes and the activation status of Smad2 and NF-κB. The induced chemotactic response was also inhibited by EGCG.

The induction of an inflammatory and CAA-like phenotype in ADMSC can be triggered by the TNBC cells secretome, while still efficiently prevented by diet-derived polyphenols.

The induction of an inflammatory and CAA-like phenotype in ADMSC can be triggered by the TNBC cells secretome, while still efficiently prevented by diet-derived polyphenols.Cardiovascular disease (CVD) is a global health concern. Vascular dysfunction is an aspect of CVD, and novel treatments targeting vascular physiology are necessary. In the endothelium, eNOS regulates vasodilation and mitochondrial function; both are disrupted in CVD. (-)-Epicatechin, a botanical compound known for its vasodilatory, eNOS, and mitochondrial-stimulating properties, is a potential therapy in those with CVD. We hypothesized that (-)-epicatechin would support eNOS activity and mitochondrial respiration, leading to improved vasoreactivity in a thermoneutral-derived rat model of vascular dysfunction. We housed Wistar rats at room temperature or in thermoneutral conditions for a total of 16 week and treated them with 1mg/kg body weight (-)-epicatechin for 15 day. Opevesostat Vasoreactivity, eNOS activity, and mitochondrial respiration were measured, in addition to the protein expression of upstream cellular signaling molecules including AMPK and CaMKII. We observed a significant improvement of vasodilation in those housed in thermoneutrality and treated with (-)-epicatechin (p < 0.05), as well as dampened mitochondrial respiration (p < 0.05). AMPK and CaMKIIα and β expression were lessened with (-)-epicatechin treatment in those housed at thermoneutrality (p < 0.05). The opposite was observed with animals housed at room temperature supplemented with (-)-epicatechin. These data illustrate a context-dependent vascular response to (-)-epicatechin, a candidate for CVD therapeutic development.Prenatal alcohol exposure (PAE) causes fetal growth restrictions. A major driver of fetal growth deficits is maternal metabolic disruption; this is under-investigated following PAE. Untargeted metabolomics on the dam and fetus exposed to alcohol (ALC) revealed that the hepatic metabolome of ALC and control (CON) dams were distinct, whereas that of ALC and CON fetuses were similar. Alcohol reduced maternal hepatic glucose content and enriched essential amino acid (AA) catabolites, N-acetylated AA products, urea content, and free fatty acids. These alterations suggest an attempt to minimize the glucose gap by increasing gluconeogenesis using AA and glycerol. In contrast, ALC fetuses had unchanged glucose and AA levels, suggesting an adequate draw of maternal nutrients, despite intensified stress on ALC dams. Maternal metabolites including glycolytic intermediates, AA catabolites, urea, and one-carbon-related metabolites correlated with fetal liver and brain weights, whereas lipid metabolites correlated with fetal body weight, indicating they may be drivers of fetal weight outcomes. Together, these data suggest that ALC alters maternal hepatic metabolic activity to limit glucose availability, thereby switching to alternate energy sources to meet the high-energy demands of pregnancy. Their correlation with fetal phenotypic outcomes indicates the influence of maternal metabolism on fetal growth and development.

A diet containing non-caloric sweeteners (NCS) could reduce calorie intake; conversely, some animal studies suggest that NCS consumption may increase functional gastrointestinal disorder symptoms (FGDs). This study aimed to compare the effect of consuming a diet containing NCS (c-NCS) versus a non-caloric sweetener-free diet (NCS-f) on FGDs.

We conducted a randomized, controlled, parallel-group study using two different diets for five weeks the c-NCS diet contained 50-100 mg/day NCS, whereas the NCS-f diet had less than 10 mg/day NCS. At the beginning of the study (PreTx) and at the end (PostTx), we assessed FGDs, dietary intake, and NCS consumption.

The percentage of participants with diarrhea (PreTx = 19% vs. PstTx = 56%;

= 0.02), post-prandial discomfort (PreTx = 9% vs. PstTx = 39%;

= 0.02), constipation (PreTx = 30% vs. PostTx = 56%;

&lt; 0.01), and burning (PreTx = 13% vs. PostTx = 33%;

&lt; 0.01) increased in the c-NCS diet group. Conversely, abdominal pain (PreTx = 15% vs. PostTx = 3%;

= 0.04), post-prandial discomfort (PreTx = 26% vs. PostTx = 6%;

= 0.02), burning (PreTx = 15% vs. PostTx = 0%;

= 0.02), early satiety (PreTx = 18% vs. PostTx = 3%;

&lt; 0.01), and epigastric pain (PreTx = 38% vs. PostTx = 3%;

&lt; 0.01) decreased in the NCS-f diet group.

A c-NCS diet is associated with increased FGDs, including diarrhea, post-prandial discomfort, constipation, and burning or retrosternal pain. The NCS-f diet also decreased FGDs, as well as abdominal pain, post-prandial discomfort, burning or retrosternal pain, early satiety, and epigastric pain.

A c-NCS diet is associated with increased FGDs, including diarrhea, post-prandial discomfort, constipation, and burning or retrosternal pain. The NCS-f diet also decreased FGDs, as well as abdominal pain, post-prandial discomfort, burning or retrosternal pain, early satiety, and epigastric pain.

Pulmonary fibrosis (PF) is a chronic, progressive, and, ultimately, terminal interstitial disease caused by a variety of factors, ranging from genetics, bacterial, and viral infections, to drugs and other influences. Varying degrees of PF and its rapid progress have been widely reported in post-COVID-19 patients and there is consequently an urgent need to develop an appropriate, cost-effective approach for the prevention and management of PF.

The potential "therapeutic" effect of the tocotrienol-rich fraction (TRF) and carotene against bleomycin (BLM)-induced lung fibrosis was investigated in rats via the modulation of TGF-β/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways.

Lung fibrosis was induced in Sprague-Dawley rats by a single intratracheal BLM (5 mg/kg) injection. These rats were subsequently treated with TRF (50, 100, and 200 mg/kg body wt/day), carotene (10 mg/kg body wt/day), or a combination of TRF (200 mg/kg body wt/day) and carotene (10 mg/kg body wt/day) for 28 days by gavage administratne treatments had significantly attenuated the BLM-induced lung injury in rats.

The results of this study clearly indicate the ability of TRF and carotene to restore the antioxidant system and to inhibit proinflammatory cytokines. These findings, thus, revealed the potential of TRF and carotene as preventive candidates for the treatment of PF in the future.

The results of this study clearly indicate the ability of TRF and carotene to restore the antioxidant system and to inhibit proinflammatory cytokines. These findings, thus, revealed the potential of TRF and carotene as preventive candidates for the treatment of PF in the future.

Autoři článku: Buchananfalk0395 (Guerra Fisker)