Bruuscontreras4867
Eye disorders affect millions of people worldwide, but the limited availability of human tissues hinders their study. Mouse models are powerful tools to understand the pathophysiology of ocular diseases because of their similarities with human anatomy and physiology. Alterations in the retinal pigment epithelium (RPE), including changes in morphology and function, are common features shared by many ocular disorders. However, successful isolation and culture of primary mouse RPE cells is very challenging. This paper is an updated audiovisual version of the protocol previously published by Fernandez-Godino et al. in 2016 to efficiently isolate and culture primary mouse RPE cells. This method is highly reproducible and results in robust cultures of highly polarized and pigmented RPE monolayers that can be maintained for several weeks on Transwells. This model opens new avenues for the study of the molecular and cellular mechanisms underlying eye diseases. Moreover, it provides a platform to test therapeutic approaches that can be used to treat important eye diseases with unmet medical needs, including inherited retinal disorders and macular degenerations.Roots extensively interact with their soil environment but visualizing such interactions between roots and the surrounding rhizosphere is challenging. The rhizosphere chemistry of wetland plants is particularly challenging to capture because of steep oxygen gradients from the roots to the bulk soil. Here a protocol is described that effectively preserves root structure and rhizosphere chemistry of wetland plants through slam-freezing and freeze drying. Slam-freezing, where the sample is frozen between copper blocks pre-cooled with liquid nitrogen, minimizes root damage and sample distortion that can occur with flash-freezing while still minimizing chemical speciation changes. While sample distortion is still possible, the ability to obtain multiple samples quickly and with minimal cost increases the potential to obtain satisfactory samples and optimizes imaging time. The data show that this method is successful in preserving reduced arsenic species in rice roots and rhizospheres associated with iron plaques. This method can be adopted for studies of plant-soil relationships in a wide variety of wetland environments that span concentration ranges from trace-element cycling to phytoremediation applications.We study the effect of surgical masks on cardiopulmonary function based on a cardiopulmonary exercise test (CPET). This study shows that surgical masks reduce cardiopulmonary exercise capacity and ventilation in healthy young subjects and wearing masks might affect aerobic exercise capacity more in female subjects than in male subjects.Reactive oxygen species (ROS) are well-established signaling molecules, which are important in normal development, homeostasis, and physiology. Among the different ROS, hydrogen peroxide (H2O2) is best characterized with respect to roles in cellular signaling. H2O2 has been implicated during the development in several species. For example, a transient increase in H2O2 has been detected in zebrafish embryos during the first days following fertilization. Furthermore, depleting an important cellular H2O2 source, NADPH oxidase (NOX), impairs nervous system development such as the differentiation, axonal growth, and guidance of retinal ganglion cells (RGCs) both in vivo and in vitro. Here, we describe a method for imaging intracellular H2O2 levels in cultured zebrafish neurons and whole larvae during development using the genetically encoded H2O2-specific biosensor, roGFP2-Orp1. This probe can be transiently or stably expressed in zebrafish larvae. Furthermore, the ratiometric readout diminishes the probability of detecting artifacts due to differential gene expression or volume effects. First, we demonstrate how to isolate and culture RGCs derived from zebrafish embryos that transiently express roGFP2-Orp1. Then, we use whole larvae to monitor H2O2 levels at the tissue level. The sensor has been validated by the addition of H2O2. Additionally, this methodology could be used to measure H2O2 levels in specific cell types and tissues by generating transgenic animals with tissue-specific biosensor expression. As zebrafish facilitate genetic and developmental manipulations, the approach demonstrated here could serve as a pipeline to test the role of H2O2 during neuronal and general embryonic development in vertebrates.Understanding the ephemeral changes that occur during brain development and maturation requires detailed high-resolution imaging in space and time at cellular and subcellular resolution. Advances in molecular and imaging technologies have allowed us to gain numerous detailed insights into cellular and molecular mechanisms of brain development in the transparent zebrafish embryo. Recently, processes of refinement of neuronal connectivity that occur at later larval stages several weeks after fertilization, which are for example control of social behavior, decision making or motivation-driven behavior, have moved into focus of research. At these stages, pigmentation of the zebrafish skin interferes with light penetration into brain tissue, and solutions for embryonic stages, e.g., pharmacological inhibition of pigmentation, are not feasible anymore. Therefore, a minimally invasive surgical solution for microscopy access to the brain of awake zebrafish is provided that is derived from electrophysiological approacoskeletal cargo or local activity-dependent expression. Therefore, a broad use for this mounting and imaging approach can be anticipated.Invariant Natural Killer T (iNKT) cells are innate-like T Lymphocytes expressing a conserved semi-invariant T cell receptor (TCR) specific for self or microbial lipid antigens presented by the non-polymorphic MHC class I-related molecule CD1d. Preclinical and clinical studies support a role for iNKT cells in cancer, autoimmunity and infectious diseases. iNKT cells are very conserved throughout species and their investigation has been facilitated by mouse models, including CD1d-deficient or iNKT-deficient mice, and the possibility to unequivocally detect them in mice and men with CD1d tetramers or mAbs specific for the semi-invariant TCR. However, iNKT cells are rare and they need to be expanded to reach manageable numbers for any study. Because the generation of primary mouse iNKT cell line in vitro has proven difficult, we have set up a robust protocol to purify and expand splenic iNKT cells from the iVα14-Jα18 transgenic mice (iVα14Tg), in which iNKT cells are 30 times more frequent. CCT245737 cost We show here that primary splenic iVα14Tg iNKT cells can be enriched through an immunomagnetic separation process, yielding about 95-98% pure iNKT cells.