Browninghaynes2745
either on the M or the m chromosome for Aedes aegypti. Such inversions can be incorporated in genetic sexing strains developed through classical genetics to enhance their genetic stability and support SIT or other approaches that aim to population suppression through male-delivered sterility.
Inducing inversions through irradiation is a feasible strategy to isolate recombination suppressors either on the M or the m chromosome for Aedes aegypti. Such inversions can be incorporated in genetic sexing strains developed through classical genetics to enhance their genetic stability and support SIT or other approaches that aim to population suppression through male-delivered sterility.
The New World Screwworm fly (NWS), Cochliomyia hominivorax, is an ectoparasite of warm-blooded animals and a major pest of livestock in parts of South America and the Caribbean where it remains endemic. In North and Central America it was eradicated using the Sterile Insect Technique (SIT). A control program is managed cooperatively between the governments of the United States and Panama to prevent the northward spread of NWS from infested countries in South America. This is accomplished by maintaining a permanent barrier through the release of millions of sterile male and female flies in the border between Panama and Colombia. Our research team demonstrated the utility of biotechnology-enhanced approaches for SIT by developing a male-only strain of the NWS. The strain carried a single component tetracycline repressible female lethal system where females died at late larval/pupal stages. The control program can be further improved by removing females during embryonic development as larval diet costs are sigacteristics observed in small-scale rearing.
The early female lethal strains described here could be selected by the NWS Control Program for testing at large scale in the production facility to enhance the efficiency of the NWS eradication program.
The early female lethal strains described here could be selected by the NWS Control Program for testing at large scale in the production facility to enhance the efficiency of the NWS eradication program.
The spotted-wing Drosophila (Drosophila suzukii) is a widespread invasive pest that causes severe economic damage to fruit crops. The early development of D. suzukii is similar to that of other Drosophilids, but the roles of individual genes must be confirmed experimentally. selleck kinase inhibitor Cellularization genes coordinate the onset of cell division as soon as the invagination of membranes starts around the nuclei in the syncytial blastoderm. The promoters of these genes have been used in genetic pest-control systems to express transgenes that confer embryonic lethality. Such systems could be helpful in sterile insect technique applications to ensure that sterility (bi-sex embryonic lethality) or sexing (female-specific embryonic lethality) can be achieved during mass rearing. The activity of cellularization gene promoters during embryogenesis controls the timing and dose of the lethal gene product.
Here, we report the isolation of the D. suzukii cellularization genes nullo, serendipity-α, bottleneck and slow-as-molasses are subject to further in vivo analyses before constructing potential pest control systems.
The similarities in the gene coding and 5' flanking sequence as well as in the expression pattern of the four cellularization genes between D. melanogaster and D. suzukii, suggest that conserved functions may be involved in both species. The high expression level at the early blastoderm stage of the four cellularization genes were confirmed, thus their promoters can be considered in embryonic lethality systems. While the Dsnullo promoter could be a suitable candidate, all reported promoters here are subject to further in vivo analyses before constructing potential pest control systems.
Bactrocera dorsalis is a destructive polyphagous and highly invasive insect pest of tropical and subtropical species of fruit and vegetable crops. The sterile insect technique (SIT) has been used for decades to control insect pests of agricultural, veterinary, and human health importance. Irradiation of pupae in SIT can reduce the ecological fitness of the sterile insects. Our previous study has shown that a gut bacterial strain BD177 that could restore ecological fitness by promoting host food intake and metabolic activities.
Using long-read sequence technologies, we assembled the complete genome of K. michiganensis BD177 strain. The complete genome of K. michiganensis BD177 comprises one circular chromosome and four plasmids with a GC content of 55.03%. The pan-genome analysis was performed on 119 genomes (strain BD177 genome and 118 out of 128 published Klebsiella sp. genomes since ten were discarded). The pan-genome includes a total of 49305 gene clusters, a small number of 858 core genes, and a high orsalis.
Phylogenomics analysis reclassified strain BD177 as a member of the species K. michiganensis. Comparative genome analysis suggested that K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis. The clear classification status of BD177 strain and identification of unique genetic characteristics may contribute to expanding our understanding of the symbiotic relationship of gut microbiota and B. dorsalis.
Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny.
Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B.