Brodersenosman2500
Next-generation Li-ion batteries (LIBs) with higher energy density adopt some novel anode materials, which generally have the potential to exhibit higher capacity, superior rate performance as well as better cycling durability than conventional graphite anode, while on the other hand always suffer from larger active lithium loss (ALL) in the first several cycles. During the last two decades, various pre-lithiation strategies are developed to mitigate the initial ALL by presetting the extra Li sources to effectively improve the first Coulombic efficiency and thus achieve higher energy density as well as better cyclability. In this progress report, the origin of the huge initial ALL of the anode and its effect on the performance of full cells are first illustrated in theory. Then, various pre-lithiation strategies to resolve these issues are summarized, classified, and compared in detail. Moreover, the research progress of pre-lithiation strategies for the representative electrochemical systems are carefully reviewed. Finally, the current challenges and future perspectives are particularly analyzed and outlooked. This progress report aims to bring up new insights to reassess the significance of pre-lithiation strategies and offer a guideline for the research directions tailored for different applications based on the proposed pre-lithiation strategies summaries and comparisons.Machine learning has demonstrated great power in materials design, discovery, and property prediction. However, despite the success of machine learning in predicting discrete properties, challenges remain for continuous property prediction. The challenge is aggravated in crystalline solids due to crystallographic symmetry considerations and data scarcity. Here, the direct prediction of phonon density-of-states (DOS) is demonstrated using only atomic species and positions as input. Euclidean neural networks are applied, which by construction are equivariant to 3D rotations, translations, and inversion and thereby capture full crystal symmetry, and achieve high-quality prediction using a small training set of ≈ 10 3 examples with over 64 atom types. The predictive model reproduces key features of experimental data and even generalizes to materials with unseen elements, and is naturally suited to efficiently predict alloy systems without additional computational cost. The potential of the network is demonstrated by predicting a broad number of high phononic specific heat capacity materials. www.selleckchem.com/Androgen-Receptor.html The work indicates an efficient approach to explore materials' phonon structure, and can further enable rapid screening for high-performance thermal storage materials and phonon-mediated superconductors.Wadsley-Roth crystallographic shear structure niobium-based oxides are of great interest in fast Li+ storage due to their unique 3D open tunnel structures that offer facile Li+ diffusion paths. Their moderate lithiation potential and reversible redox couples hold the great promise in the development of next-generation lithium-ion batteries (LIBs) that are characterized by high power density, long lifespan, and high safety. Despite these outstanding merits, there is still extensive advancement space for further enhancing their electrochemical kinetics. And the industrial feasibility of Wadsley-Roth crystallographic shear structure niobium-based oxides as anode materials for LIBs requires more systematic research. In this review, recent progress in this field is summarized with the aim of realizing the practical applications of Wadsley-Roth phase anode materials in commercial LIBs. The review focuses on research toward the crystalline structure analyses, electrochemical reaction mechanisms, modification strategies, and full cell performance. In addition to highlighting the current research advances, the outlook and perspective on Wadsley-Roth anode materials is also concisely provided.Ligation auxiliaries are used in chemical protein synthesis to extend the scope of native chemical ligation (NCL) beyond cysteine. However, auxiliary-mediated ligations at sterically demanding junctions have been difficult. Often the thioester intermediate formed in the thiol exchange step of NCL accumulates because the subsequent S→N acyl transfer is extremely slow. Here we introduce the 2-mercapto-2-(pyridin-2-yl)ethyl (MPyE) group as the first auxiliary designed to aid the ligation reaction by catalysis. Notably, the MPyE auxiliary provides useful rates even for junctions containing proline or a β-branched amino acid. Quantum chemical calculations suggest that the pyridine nitrogen acts as an intramolecular base in a rate-determining proton transfer step. The auxiliary is prepared in two steps and conveniently introduced by reductive alkylation. Auxiliary cleavage is induced upon treatment with TCEP/morpholine in presence of a MnII complex as radical starter. The synthesis of a de novo designed 99mer peptide and an 80 aa long MUC1 peptide demonstrates the usefulness of the MPyE auxiliary.Process intensification of monoclonal antibody production is leading to more concentrated feed media causing issues with precipitation of solids from the media solution. This results in processing problems since components in the precipitate are no longer in solution, changing the media composition and leading to variability in cell culture performance. The goal of this work is to characterize the feed media precipitate, and in particular to identify the precipitated components so that mitigation strategies can be developed. From the conducted analysis, the precipitate was predominately found to be organic and was analyzed with liquid chromatography-mass spectrometry and inductively coupled plasma-optical emission spectroscopy (ICP-OES) to identify the constituent components. Up to ten amino acids were identified with tyrosine (approximately 77 wt.%) and phenylalanine (approximately 4 wt.%) being the most prevalent amino acids. Elemental analysis with ICP-OES revealed that inorganic components were accounted for less than one weight percentage of the solid precipitate with metal sulfates being the predominant inorganic components.