Brockchaney3275

Z Iurium Wiki

The ultrafast dynamics of photo-OxaDiBenzocycloOctyne (photo-ODIBO) photo-dissociation was studied using femtosecond transient absorption spectroscopy. Steady-state UV-Vis, time-dependent density functional theory, and 350 nm and 321 nm transient absorption studies are reported. Photo-ODIBO excitation with 321 nm and 350 nm light-induced photodecarbonylation of the cyclopropenone functional group results in the formation of ODIBO. The presence of the photoproduct was confirmed by the results of steady-state photolysis experiments and the observation of absorption signatures of ODIBO in the photo-ODIBO transient absorption spectra. Analysis of the latter revealed the underlying photochemical mechanisms and associated time constants, following excitation of the samples. The dynamics show a multi-exponential decay process, following the dissociation of photo-ODIBO into an excited state of the photoproduct ODIBO within less then 294 fs after 321 nm excitation. 350 nm excitation, on the other hand, is shown to produce ground state ODIBO via an intermediate species. Additional transient absorption measurements were performed directly on the photoproduct ODIBO to help distinguish spectral signatures associated with these processes.Machine-learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations, enabling accurate simulations of greater size, time scale, and complexity. Given the interpolative nature of these models, the reliability of predictions depends on the position in phase space, and it is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during model training. When using a machine-learning potential to sample a finite-temperature ensemble, the uncertainty on individual configurations translates into an error on thermodynamic averages and leads to a loss of accuracy when the simulation enters a previously unexplored region. Here, we discuss how uncertainty quantification can be used, together with a baseline energy model, or a more robust but less accurate interatomic potential, to obtain more resilient simulations and to support active-learning strategies. Furthermore, we introduce an on-the-fly reweighing scheme that makes it possible to estimate the uncertainty in thermodynamic averages extracted from long trajectories. We present examples covering different types of structural and thermodynamic properties and systems as diverse as water and liquid gallium.Multipole moments are the first-order responses of the energy to spatial derivatives of the electric field strength. The quality of density functional theory prediction of molecular multipole moments thus characterizes errors in modeling the electron density itself, as well as the performance in describing molecules interacting with external electric fields. However, only the lowest non-zero moment is translationally invariant, making the higher-order moments origin-dependent. Therefore, instead of using the 3 × 3 quadrupole moment matrix, we utilize the translationally invariant 3 × 3 matrix of second cumulants (or spatial variances) of the electron density as the quantity of interest (denoted by K). The principal components of K are the square of the spatial extent of the electron density along each axis. A benchmark dataset of the principal components of K for 100 small molecules at the coupled cluster singles and doubles with perturbative triples at the complete basis set limit is developed, resulting in 213 independent K components. The performance of 47 popular and recent density functionals is assessed against this Var213 dataset. Several functionals, especially double hybrids, and also SCAN and SCAN0 predict reliable second cumulants, although some modern, empirically parameterized functionals yield more disappointing performance. The H, Li, and Be atoms, in particular, are challenging for nearly all methods, indicating that future functional development could benefit from the inclusion of their density information in training or testing protocols.A comprehensive investigation of low-energy electron attachment and electron ionization of the nimorazole radiosensitizer used in cancer radiation therapy is reported by means of a gas-phase crossed beam experiment in an electron energy range from 0 eV to 70 eV. Regarding negative ion formation, we discuss the formation of fifteen fragment anions in the electron energy range of 0 eV-10 eV, where the most intense signal is assigned to the nitrogen dioxide anion NO2 -. The other fragment anions have been assigned to form predominantly from a common temporary negative ion state close to 3 eV of the nitroimidazole moiety, while the morpholine moiety seems to act only as a spectator in the dissociative electron attachment event to nimorazole. Quantum chemical calculations have been performed to help interpreting the experimental data with thermochemical thresholds, electron affinities, and geometries of some of the neutral molecules. As far as positive ion formation is concerned, the mass spectrum at the electron energy of 70 eV shows a weakly abundant parent ion and C5H10NO+ as the most abundant fragment cation. We report appearance energy (AE) measurements for six cations. For the intact nimorazole molecular cation, the AE of 8.16 ± 0.05 eV was obtained, which is near the presently calculated adiabatic ionization energy.Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au-Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metallic photoluminescence. The experiments are conducted by altering the incident laser intensity and polarization using a home-built scanning confocal optical microscope. The results show that AMPL originates from the recombination of avalanche hot carriers that are seeded by multiphoton ionization. Notably, at the excitation stage, multiphoton ionization is shown to be assisted by the local electromagnetic field enhancement produced by coupled plasmonic modes. At the emission step, the giant AMPL intensity can be evaluated as a function of the local field environment and the thermal factor for hot carriers, in accordance with a linear relationship between the power law exponent coefficient and the emitted photon energy. The dramatic change in the spectral profile is explained by spectral linewidth broadening mechanisms. This study offers nanospectroscopic evidence of both the potential optical damages for plasmonic nanostructures and the underlying physical nature of light-matter interactions under a strong laser field; it illustrates the significance of the emerging topics of plasmonic-enhanced spectroscopy and laser-induced breakdown spectroscopy.A detailed analysis of the electronic structure of three different electrochemical interfaces as a function of the chemical potential (μ) is performed using the grand canonical density functional theory in the joint density functional theory formulation. Changes in the average number of electrons and the density of states are also described. The evaluation of the global softness, which measures the tendency of the system to gain or lose electrons, is straightforward under this formalism. The observed behavior of these quantities depends on the electronic nature of the electrochemical interfaces.The (001) surface of the emerging photovoltaic material cesium lead triiodide (CsPbI3) is studied. Using first-principles methods, we investigate the atomic and electronic structure of cubic (α) and orthorhombic (γ) CsPbI3. For both phases, we find that CsI-termination is more stable than PbI2-termination. For the CsI-terminated surface, we then compute and analyze the surface phase diagram. We observe that surfaces with added or removed units of nonpolar CsI and PbI2 are most stable. The corresponding band structures reveal that the α phase exhibits surface states that derive from the conduction band. The surface reconstructions do not introduce new states in the bandgap of CsPbI3, but for the α phase, we find additional surface states at the conduction band edge.A small number of associating groups incorporated onto a polymer backbone have dramatic effects on the mobility and viscoelastic response of the macromolecules in melts. check details These associating groups assemble, driving the formation of clusters, whose lifetime affects the properties of the polymers. Here, we probe the effects of the interaction strength on the structure and dynamics of two topologies, linear and star polymer melts, and further investigate blends of associative and non-associating polymers using molecular dynamics simulations. Polymer chains of approximately one entanglement length are described by a bead-spring model, and the associating groups are incorporated in the form of interacting beads with an interaction strength between them that is varied from 1 to 20 kBT. We find that, for all melts and blends, interaction of a few kBT between the associating groups drives cluster formation, where the size of the clusters increases with increasing interaction strength. These clusters act as physical crosslinkers, which slow the chain mobility. Blends of chains with and without associating groups macroscopically phase separate for interaction strength between the associating groups of a few kBT and above. For weakly interacting associating groups, the static structure function S(q) is well fit by functional form predicted by the random phase approximation where a clear deviation occurs as phase segregation takes place, providing a quantitative assessment of phase segregation.The problem of resonant energy transfer (RET) between an electric dipole donor, D, and an electric dipole acceptor, A, mediated by a passive, chiral third-body, T, is considered within the framework of molecular quantum electrodynamics theory. To account for the optical activity of the mediator, magnetic dipole and electric quadrupole coupling terms are included in addition to the leading electric dipole interaction term. Fourth-order diagrammatic time-dependent perturbation theory is used to obtain the matrix element. It is found that the Fermi golden rule rate depends on pure multipole moment polarizabilities and susceptibilities of T, as well as on various mixed electric and magnetic multipole moment response functions. The handedness of T manifests through mixed electric-magnetic dipole and mixed electric dipole-quadrupole polarizabilities, which affect the rate and, respectively, require the use of fourth-rank and sixth-rank Cartesian tensor averages over T, yielding non-vanishing isotropic rate formulae applicable to a chiral fluid medium. Terms of a similar order of magnitude proportional to the product of electric dipole polarizability and either magnetic dipole susceptibility or electric quadrupole polarizability of T are also computed for oriented and freely tumbling molecules. Migration rates dependent upon the product of the pure electric dipole or magnetic dipole polarizability with the mixed electric-magnetic or electric dipole-quadrupole analogs, which require fourth- and fifth-rank Cartesian tensor averaging, vanish for randomly oriented systems. Asymptotically limiting rate expressions are also evaluated. Insight is gained into RET occurring in complex media.

Autoři článku: Brockchaney3275 (Kronborg Jensen)