Broberglarkin2761
Correction for 'Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds' by L. Fernandez et al., Nanoscale, 2020, 12, 22258-22267, DOI 10.1039/D0NR04964F.Red blood cells (RBCs) must be highly deformable to transit through the microvasculature to deliver oxygen to tissues. The loss of RBC deformability resulting from pathology, natural aging, or storage in blood bags can impede the proper function of these cells. A variety of methods have been developed to measure RBC deformability, but these methods require specialized equipment, long measurement time, and highly skilled personnel. To address this challenge, we investigated whether a machine learning approach could be used to predict donor RBC deformability based on morphological features from single cell microscope images. We used the microfluidic ratchet device to sort RBCs based on deformability. Sorted cells are then imaged and used to train a deep learning model to classify RBC based image features related to cell deformability. This model correctly predicted deformability of individual RBCs with 81 ± 11% accuracy averaged across ten donors. Using this model to score the deformability of RBC samples was accurate to within 10.4 ± 6.8% of the value obtained using the microfluidic ratchet device. While machine learning methods are frequently developed to automate human image analysis, our study is remarkable in showing that deep learning of single cell microscopy images could be used to assess RBC deformability, a property not normally measurable by imaging. Measuring RBC deformability by imaging is also desirable because it can be performed rapidly using a standard microscopy system, potentially enabling RBC deformability studies to be performed as part of routine clinical assessments.The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.The electrical control of topological magnetism is an intensive topic in spintronic devices. Here, using first-principles calculations and micromagnetic simulations, we show the potential of two-dimensional (2D) magnetoelectric multiferroics in the area of topological magnetism. Intrinsic Dzyaloshinskii-Moriya interactions (DMIs) can promote the stabilization of sub-10 nm skyrmions or bimerons in 2D multiferroics. In addition, the electric polarization in 2D multiferroics provides an opportunity for the electrical control of interfacial DMI chirality and thereby the topological magnetism. These results provide a promising route for the modulation of topological magnetism in 2D spintronic devices.The past several years have seen a resurgence in the popularity of metal exsolution as an approach to synthesize advanced materials proposed for novel catalytic, magnetic, optical, and electrochemical properties. Whereas most studies to-date have focused on surface exsolution (motivated by catalysis), we instead report on the diversity of nanostructures formed in La0.6Sr0.4FeO3 thin films during sub-surface or so-called 'bulk' exsolution, in addition to surface exsolution. Bulk exsolution is a promising approach to tuning the functionality of materials, yet there is little understanding of the nanostructures exsolved within the bulk and how they compare to those exsolved at gas-solid interfaces. This work combines atomic- and nano-scale imaging and spectroscopy techniques applied using a state-of-the-art aberration-corrected scanning transmission electron microscope (STEM). In doing so, we present a detailed atomic-resolution study of a range of Fe-rich and Fe-depleted nanostructures possible via exsolution, solution to synthesize materials with predictable nanostructures.Bismuth oxyiodide (BiOI) is a traditional layered oxide photocatalyst that performs in a wide visible-light absorption band, owing to its appropriate band structure. Nevertheless, its photocatalytic efficiency is immensely inhibited due to the serious recombination of photogenerated charge carriers. Herein, this great challenge is addressed via a new strategy of intralayer modification by -OH groups in BiOI, which leads to enhancement of the reactants' activation capacity to promote photocatalytic activity and generate more active species. Furthermore, analysis via a combination of experimental and theoretical methods revealed that the -OH group-functionalized samples reduce the energy barriers for conversion of the main intermediate (NO2), which is easily transformed to NO2-, thus accelerating the oxidation of NO to the final product (NO3-). This study gives insight into NO oxidation, improving the photocatalytic efficiency, and mastering the photocatalysis reaction mechanism to curb air pollution.Blocking the non-specific binding of fluorescent biomolecules to substrates is one of the most important approaches to minimize the background noise in single-molecule fluorescence detection. Polyethylene glycol (PEG) and its derivatives are the most frequently used self-assembled monolayers (SAMs) for surface passivation because they are particularly effective to reduce the adsorption of a majority of biomolecules. Most studies related to PEG SAMs focus only on the interactions between biomolecules and substrates, while few reports exist in which the interactions between fluorophores and organosilane SAMs are directly examined. The objective of this study is to try to clarify the interactions between fluorescein isothiocyanate (FITC) and PEG SAMs at different ionic strengths. Total internal reflection microscopy (TIRM) was utilized for quantitative analysis of the interactions. At low ionic strength, long-range attractions between FITC-modified polystyrene-silica particles and PEG SAM grafting substrates were observed, even though both of them had an ensemble-averaged negative charge. The origin of this attraction could be correlated to their nonuniformly charged surfaces. At high ionic strength, van der Waals attraction at short distances was measured as the electrostatic interactions were completely screened. Due to the polarizability of the FITC molecule, the van der Waals attractions increased with the thickness of the PEG SAMs. This phenomenon is explained by the hydration shell of the PEG SAMs.Correction for 'Rapidly clearable MnCo2O4@PAA as novel nanotheranostic agents for T1/T2 bimodal MRI imaging-guided photothermal therapy' by Ying Zhao et al., Nanoscale, 2021, 13, 16251-16257, DOI 10.1039/D1NR04067G.The C-H bond addition reaction of 2-phenylpyridine derivatives with α,β-unsaturated carboxylic acids catalyzed by Cp*Rh(III)/BH3·SMe2 is reported. STAT3-IN-1 nmr Activation of C-H bonds with the rhodium catalyst and activation of α,β-unsaturated carboxylic acids with the boron catalyst cooperatively work, and a BINOL-urea hybrid ligand significantly improved the reactivity. With the optimized hybrid catalytic system, various β-disubstituted carboxylic acids were obtained under mild reaction conditions.Considering that the pH in the tumor microenvironment is dysregulated, we designed a β-hairpin peptide (SSRFEWEFESSDPRGDPSSRFEWEFESS). The configuration of the peptide switched from a flexible linear to a rigid loop structure under weakly acidic conditions. The peptide internalized by tumor cells increased significantly under weakly acidic conditions.Material properties of the genome are critical for proper cellular function - they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we use the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process.Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing.