Brennandalsgaard7267

Z Iurium Wiki

Unlike in humans and animals, plant germlines are specified de novo from somatic cells in the reproductive organs of the flower. In most flowering plant ovules, the female germline starts with the differentiation of one megaspore mother cell (MMC), which initiates a developmental program distinct from adjoining cells. Phytohormones act as a key player in physiological processes during plant development, in particular by providing positional information that supports localized differentiation events. However, little is known about the role of phytohormones for female germline initiation and establishment. 20Hydroxyecdysone Using Arabidopsis as a flowering plant model, we show that brassinosteroid (BR) biosynthesis and signaling components are accumulated in sporophytic cells of ovule primordia but not in the megaspore mother cell representing the precursor of the female germline. We further demonstrate that BR signaling restricts multiple sub-epidermal cells in the distal nucellus region of ovule primordia from acquiring MMC-like cell identity by transiently activating the WRKY23 transcription factor, expressed exclusively in L2 layer cells adjacent to the MMC. This activation is regulated through the BRI1 receptor and directly by the BZR1 transcriptional repressor family. Mutations in BR biosynthesis or signaling components and ectopic activation of BR signaling in MMCs induce multiple MMC-like cells. In summary, our findings elucidate a gene regulatory network that shows how the hormone BR generated in sporophytic ovule primordia cells restricts the origin of the female germline to a single cell.Proper segregation of chromosomes during mitosis depends on "amphitelic attachments"-load-bearing connections of sister kinetochores to the opposite spindle poles via bundles of microtubules, termed as the "K-fibers." Current models of spindle assembly assume that K-fibers arise largely from stochastic capture of microtubules, which occurs at random times and locations and independently at sister kinetochores. We test this assumption by following the movements of all kinetochores in human cells and determine that most amphitelic attachments form synchronously at a specific stage of spindle assembly and within a spatially distinct domain. This biorientation domain is enriched in bundles of antiparallel microtubules, and perturbation of microtubule bundling changes the temporal and spatial dynamics of amphitelic attachment formation. Structural analyses indicate that interactions of kinetochores with microtubule bundles are mediated by non-centrosomal short microtubules that emanate from most kinetochores during early prometaphase. Computational analyses suggest that momentous molecular motor-driven interactions with antiparallel bundles rapidly convert these short microtubules into nascent K-fibers. Thus, load-bearing connections to the opposite spindle poles form simultaneously on sister kinetochores. In contrast to the uncoordinated sequential attachments of sister kinetochores expected in stochastic models of spindle assembly, our model envisions the formation of amphitelic attachments as a deterministic process in which the chromosomes connect with the spindle poles synchronously at a specific stage of spindle assembly and at a defined location determined by the spindle architecture. Experimental analyses of changes in the kinetochore behavior in cells with perturbed activity of molecular motors CenpE and dynein confirm the predictive power of the model.The hippocampus is involved in the formation of memories that require associations among stimuli to construct representations of space and the items and events within that space. Neurons in the dentate gyrus (DG), an initial input region of the hippocampus, have robust spatial tuning, but it is unclear how nonspatial information may be integrated with spatial activity in this region. We recorded from the DG of 21 adult mice as they foraged for food in an environment that contained discrete objects. We found DG cells with multiple firing fields at a fixed distance and direction from objects (landmark vector cells) and cells that exhibited localized changes in spatial firing when objects in the environment were manipulated. By classifying recorded DG cells into putative dentate granule cells and mossy cells, we examined how the addition or displacement of objects affected the spatial firing of these DG cell types. Object-related activity was detected in a significant proportion of mossy cells. Although few granule cells with responses to object manipulations were recorded, likely because of the sparse nature of granule cell firing, there was generally no significant difference in the proportion of granule cells and mossy cells with object responses. When mice explored a second environment with the same objects, DG spatial maps completely reorganized, and a different subset of cells responded to object manipulations. Together, these data reveal the capacity of DG cells to detect small changes in the environment while preserving a stable spatial representation of the overall context.Social relationships are dynamic and evolve with shared and personal experiences. Whether the functional role of social neuromodulators also evolves with experience to shape the trajectory of relationships is unknown. We utilized pair bonding in the socially monogamous prairie vole as an example of socio-sexual experience that dramatically alters behaviors displayed toward other individuals. We investigated oxytocin-dependent modulation of excitatory synaptic transmission in the nucleus accumbens as a function of pair-bonding status. We found that an oxytocin receptor agonist decreases the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in sexually naive virgin, but not pair-bonded, female voles, while it increases the amplitude of electrically evoked EPSCs in paired voles, but not in virgins. This oxytocin-induced potentiation of synaptic transmission relies on the de novo coupling between oxytocin receptor signaling and endocannabinoid receptor type 1 (CB1) receptor signaling in pair-bonded voles. Blocking CB1 receptors after pair-bond formation increases the occurrence of a specific form of social rejection-defensive upright response-that is displayed toward the partner, but not toward a novel individual. Altogether, our results demonstrate that oxytocin's action in the nucleus accumbens is changed through social experience in a way that regulates the trajectory of social interactions as the relationship with the partner unfolds, potentially promoting the maintenance of a pair bond by inhibiting aggressive responses. These results provide a mechanism by which social experience and context shift oxytocinergic signaling to impact neural and behavioral responses to social cues.Deregulation of transcription is a hallmark of acute myeloid leukemia (AML) that drives oncogenic expression programs and presents opportunities for therapeutic targeting. By integrating comprehensive pan-cancer enhancer landscapes with genetic dependency mapping, we find that AML-enriched enhancers encode for more selective tumor dependencies. We hypothesized that this approach could identify actionable dependencies downstream of oncogenic driver events and discovered a MYB-regulated AML-enriched enhancer regulating SEPHS2, a key component of the selenoprotein production pathway. Using a combination of patient samples and mouse models, we show that this enhancer upregulates SEPHS2, promoting selenoprotein production and antioxidant function required for AML survival. SEPHS2 and other selenoprotein pathway genes are required for AML growth in vitro. SEPHS2 knockout and selenium dietary restriction significantly delay leukemogenesis in vivo with little effect on normal hematopoiesis. These data validate the utility of enhancer mapping in target identification and suggest that selenoprotein production is an actionable target in AML.Several groups have during past years produced molecular classification schemes for bladder cancer. Even though no consensus on how to define a subtype exists, one approach has been to base definitions on how tumours cluster according to their mRNA expression profiles. In many cases, obtained profiles, and thus class defining features, are affected by signals from non-tumour cells within the biopsy. To overcome this issue, we combined gene expression analyses with analyses of the actual tumour cells by extensive immunohistochemistry (IHC). By this approach we were able to define tumour cell phenotypes i.e., subtypes defined by features of the tumour cells only, and adjust mRNA-based algorithms accordingly. In the present investigation we address the non-luminal Basal/Squamous-like (Ba/Sq) and Small cell/Neuroendocrine-like (Sc/NE) categories of tumours defined by mRNA-based classification. We make use of IHC data for 15 proteins, all known to be instrumental for defining molecular subtypes of urothelial carcinoma. We show that the UroB type of tumours, frequently grouped together with Ba/Sq, are different from the Ba/Sq entity at several essential features and is a derivative of Urothelial-like tumours (Uro). We show that the Sc/NE tumours are similar to but represents extreme versions of Genomically Unstable (GU) tumours. We apply clustering to 423 cases representing all subtypes using IHC data for 14 proteins and show that the obtained grouping conforms well with the mRNA-based classification. This work describes in detail the molecular pathology of non-luminal RNA-based bladder cancer subtypes and highlight similarities/dissimilarities suggestive of origin.Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.

Autoři článku: Brennandalsgaard7267 (Head Hald)