Bredahlguy7432
ith disease on Quercus, Pinus, and Malus. Such information is critical to increase our understanding of Armillaria root disease across diverse geographic regions and climates.Bacterial wilt (BW), caused by Ralstonia solanacearum species complex (RSSC), leads to substantial potato yield losses in Rwanda. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with BW of potato, (ii) generate an RSSC distribution map for epidemiological inferences, and (iii) test the pathogenicity of predominant RSSC phylotypes on six commercial potato cultivars. In surveys conducted in 2018 and 2019, tubers from wilting potato plants were collected for pathogen isolation. DNA was extracted from 95 presumptive RSSC strain colonies. The pathogen was phylotyped by multiplex PCR and typed at sequevar level. Phylotype II sequevar 1 strains were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. Pathogenicity of one phylotype II strain and two phylotype III strains were tested on cultivars Kinigi, Kirundo, Victoria, Kazeneza, Twihaze, and Cruza. Two RSSC phylotypes were identified, phylotype II (95.79%, n = 91) and phylotype III (4.21%, n = 4). This is the first report of phylotype III strains from Rwanda. Phylotype II strains were identified as sequevar 1 and distributed across potato growing regions in the country. The TRST scheme identified 14 TRST haplotypes within the phylotype II sequevar 1 strains with moderate diversity index (HGDI = 0.55). Mapping of TRST haplotypes revealed that a single TRST '8-5-12-7-5' haplotype plays an important epidemiological role in BW of potato in Rwanda. None of the cultivars had complete resistance to the tested phylotypes; the level of susceptibility varied among cultivars. Cultivar Cruza, which is less susceptible to phylotype II and III strains, is recommended when planting potatoes in the fields with history of BW.[Formula see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.Pectobacterium spp. are a major cause of loss in vegetable and ornamental plant production. One of these species, Pectobacterium carotovorum, can cause soft rot disease on many plants, particularly potato. These diseases lead to significant economic loss and pose food security threats by reducing crop yields in the field, in transit, and during storage. The Gram-negative enterobacterium P. carotovorum WPP14 is a particularly virulent strain for which there is no available closed genome, limiting the molecular research for this important pathogen. Here, we report a high-quality complete and annotated genome sequence of P. carotovorum WPP14. The 4,892,225-bp genome was assembled with Nanopore reads and polished with Illumina reads, yielding 394× and 164× coverage, respectively. Androgen Receptor Antagonist ic50 This closed genome provides a resource for research on improved detection and biology of P. carotovorum, which could translate into improved disease management.Although the vascular pathogen Fusarium oxysporum is notorious for being the causal agent of Fusarium wilt disease, the vast majority of F. oxysporum strains are harmless soil and root colonizers. The latter F. oxysporum's are often endophytes colonizing roots intracellularly without negatively affecting plant fitness. Actually, most of them, like Fo47, are beneficial providing biological control to various root pathogens. Interestingly, also pathogenic F. oxysporum inoculated on a resistant host (i.e., avirulent F. oxysporum f. sp. lycopersici) can reduce susceptibility to virulent F. oxysporum strains via a mechanism called "cross protection." It has been hypothesized that cross protection is based on activation of a resistance protein of the host upon recognition of a cognate avirulence (Avr) protein of the pathogen. Currently, it is unknown whether the biocontrol activity of F. oxysporum endophytes utilizes similar mechanisms as cross protection conferred by avirulent pathogens, and whether both provide a quantitative similar level of protection. Here, we show that in tomato biocontrol activity of the Fo47 endophyte to the pathogen F. oxysporum f. sp. lycopersici is more effective than cross protection induced by avirulent F. oxysporum f. sp. lycopersici strains activating either I, I-2, or both resistance proteins upon recognition of Avr1 or the Avr2/Six5 pair, respectively. These findings imply that cross protection and biological control utilize different mechanisms to reduce susceptibility of the host to subsequent infections.Pseudomonas is a complex genus with increasing numbers of new species. Recently, we isolated Pseudomonas sp. strain L22-9, which showed antifungal activity against several fungal phytopathogens. Here, we report the whole genome sequence of strain L22-9. Genomic analysis revealed that strain L22-9 contains one circular DNA chromosome of 6,730,360 bp length with 60.9% GC content. Bioinformatics analysis identified gene clusters in the genome that synthesize antimicrobial metabolites such as 2,4-diacetylphloroglucinol synthesis and hydrogen cyanide synthase. Further analysis suggests that strain L22-9 is a novel species of the genus Pseudomonas. This genome would be a valuable resource for future research in phytopathology.Plant subtilases (SBTs) or subtilisin-like proteases comprise a very diverse family of serine peptidases that participates in a broad spectrum of biological functions. Despite increasing evidence for roles of SBTs in plant immunity in recent years, little is known about wheat (Triticum aestivum) SBTs (TaSBTs). Here, we identified 255 TaSBT genes from bread wheat using the latest version 2.0 of the reference genome sequence. The SBT family can be grouped into five clades, from TaSBT1 to TaSBT5, based on a phylogenetic tree constructed with deduced protein sequences. In silico protein-domain analysis revealed the existence of considerable sequence diversification of the TaSBT family which, together with the local clustered gene distribution, suggests that TaSBT genes have undergone extensive functional diversification. Among those TaSBT genes whose expression was altered by biotic factors, TaSBT1.7 was found to be induced in wheat leaves by chitin and flg22 elicitors, as well as six examined pathogens, implying a role for TaSBT1.