Brandonnyborg6014

Z Iurium Wiki

69 µg/L) (p less then 0.0032). In the study, 9.8, 11.2, and 4.8% of the donors were in Stage 1, Stage 2, and Stage 3 of reduced BIS, respectively. Of the donors, 11.2% were in Stage 2 of reduced BIS. Further donations in such cases can compromise donor safety. Conclusion The present study demonstrates iron depletion in regular voluntary blood donors. In 11.2% of the donors, iron deficiency erythropoiesis was noted. A ferritin screening after the first donation followed up at the tenth donation might help detect iron-deficient individuals. Iron supplementation for all regular blood donors and female donors in particular will help prevent the shrinking donor pool due to iron deficiency. Copyright © 2019 by S. Karger AG, Basel.Objectives The purpose of this study was to examine modifiable factors and their impact on perioperative blood transfusion for pediatric patients with major abdominal procedures. Methods This is a retrospective review of 1,506 patients who underwent major abdominal surgical procedures in a tertiary medical center from January 2008 to June 2018. Clinical data about blood administration including triggers and targets for intra- or postoperative transfusion were collected and analyzed. The inappropriate transfusion (transfusion > 8.0 g/dL of hemoglobin [Hb] trigger) and overtrans-fusion criteria (target transfusion > 10.0 g/dL or > 2 g/dL of target minus trigger level) were applied to examine the intraoperative factors with the intraoperative transfusion practice. Perioperative morbidity was further assessed based on the inappropriate transfusion and overtransfusion status. Results Intraoperative transfusion was used in 468 (31.1%) of the 1,506 patients included in the study. Among them, 212 (45.3%) intraoperative transfusion episodes were classified as inappropriate, and 135 cases (28.8%) were confirmed as overtransfusion. On univariate analysis, inappropriate transfusions were observed more commonly among patients with younger age (p less then 0.001) and who underwent hepatic resection (p less then 0.001) or intestinal resection (p less then 0.001). Overtransfusion was also associated with elevated trigger of 8.0 g/dL Hb (p = 0.006) and younger age (p = 0.003). No perioperative complications were associated with inappropriate transfusions and overtransfusion under multivariate analysis. Conclusions Overtransfusion was common in hepatic resection and younger age, but to definitely prove this hypothesis, a prospective randomized trial needs to be performed. Copyright © 2019 by S. Karger AG, Basel.Background Anemia of inflammation (AI) is the most common cause of anemia in the critically ill, but its diagnosis is a challenge. New therapies specific to AI are in development, and they require accurate detection of AI. This study explores the potential of parameters of iron metabolism for the diagnosis of AI during an ICU stay. Methods In a nested case-control study, 30 patients developing AI were matched to 60 controls. The iron parameters were determined in plasma samples during an ICU stay. Receiver operating characteristic curves were used to determine the iron parameter threshold with the highest sensitivity and specificity to predict AI. Likelihood ratios as well as positive and negative predictive values were calculated as well. Results The sensitivity of iron parameters for diagnosing AI ranges between 62 and 76%, and the specificity between 57 and 72%. Iron and transferrin show the greatest area under the curve. Iron shows the highest sensitivity, and transferrin and transferrin saturation display the highest specificity. Hepcidin and ferritin show the lowest specificity. At an actual anemia prevalence of 53%, the diagnostic accuracy of iron, transferrin, and transferrin saturation was fair, with a positive predictive value between 71 and 73%. Combining iron, transferrin, transferrin saturation, hepcidin, and/or ferritin levels did not increase the accuracy of the AI diagnosis. Conclusions In this explorative study on the use of different parameters of iron metabolism for diagnosing AI during an ICU stay, low levels of commonly measured markers such as plasma iron, transferrin, and transferrin saturation have the highest sensitivity and specificity and outperform ferritin and hepcidin. Copyright © 2019 by S. Karger AG, Basel.Background Molecular genetics of the Rh system has been extensively studied in Caucasians, Black Africans, East Asians, and Indians more recently. In this work, we sought to investigate the molecular basis of variant D expression in the Thai population, which remains unknown. Materials and Methods Blood samples from 450 Thai donors showing the variant D phenotype were collected. The RHD gene was analyzed by quantitative multiplex polymerase chain reaction of short fluorescent fragments and/or Sanger sequencing. Results The most frequent alleles in 200 D-negative and 121 DEL samples were the whole RHD gene deletion and the Asian DEL alleles, respectively. In 129 weak/partial D samples, 36 variant alleles were identified, including eight novel alleles. RHD*06.03, which is common in variant D samples from South China, is the most prevalent variant allele, followed by the recently reported Indian RHD*01W.150 allele. Discussion For the first time, a comprehensive overview of the nature and distribution of variant RHD alleles in Thailand is reported. It is a milestone to pave the way towards improvement of the current screening strategy to identify DEL donors accurately. The next step will be the design and implementation of a simple molecular test for screening the most frequent alleles, specifically in this population. Lazertinib Copyright © 2019 by S. Karger AG, Basel.Introduction ABO blood group incompatibility between a pregnant woman and her fetus as a cause of morbidity or mortality of the fetus or newborn remains an important, albeit rare, risk. When a pregnant woman has a high level of anti-A or anti-B IgG antibodies, the child may be at risk for hemolytic disease of the fetus and newborn (HDFN). Performing a direct prenatal determination of the fetal ABO blood group can provide valuable clinical information. Objective Here, we report a next generation sequencing (NGS)-based assay for predicting the prenatal ABO blood group. Materials and Methods A total of 26 plasma samples from 26 pregnant women were tested from gestational weeks 12 to 35. Of these samples, 20 were clinical samples and 6 were test samples. Extracted cell-free DNA was PCR-amplified using 2 primer sets followed by NGS. NGS data were analyzed by 2 different methods, FASTQ analysis and a grep search, to ensure robust results. The fetal ABO prediction was compared with the known serological infant ABO terozygote frequency, we estimate that we can assign a reliable fetal ABO type in approximately 95% of the forthcoming clinical samples of type O pregnant women. Despite the vast genetic variations underlying the ABO blood groups, many variants are rare, and prenatal ABO prediction is possible and adds valuable early information for the prevention of ABO HDFN. Copyright © 2020 by S. Karger AG, Basel.Background Exposure to non-matching human platelet alloantigens (HPA) may result in alloimmunization. Antibodies to HPA can be responsible for post-transfusion purpura, refractoriness to donor platelets, and fetal and neonatal alloimmune thrombocytopenia. For the supply of compatible apheresis platelet concentrates, the HPA genotypes are determined in a routine manner. Methods Here, we describe a novel method for genotyping twelve different HPA systems simultaneously, including HPA-1 to HPA-5, HPA-9w, HPA-10w, HPA-16w, HPA-19w, HPA-27w, and the novel HPA-34w by means of amplicon-based next-generation sequencing (NGS). Blood donor samples of 757 individuals with a migration background and 547 of Western European ancestry were genotyped in a mass-screening setup. An in-house software was developed for fast and automatic analysis. TaqMan assay and Sanger sequencing results served for validation of the NGS workflow. Finally, blood donors were divided in several groups based on their country of origin and the alle is a reliable method for screening HPA genotypes in a large sample cohort simultaneously. It is easily upgradeable for genotyping additional targets without changing the setup or the analysis pipeline. Mass-screening methods will help building up blood donor registries to provide matched blood products. Copyright © 2020 by S. Karger AG, Basel.Background In the novel era of blood group genomics, (re-)defining reference gene/allele sequences of blood group genes has become an important goal to achieve, both for diagnostic and research purposes. As novel potent sequencing technologies are available, we thought to investigate the variability encountered in the three most common alleles of ACKR1, the gene encoding the clinically relevant Duffy antigens, at the haplotype level by a long-read sequencing approach. Materials and Methods After long-range PCR amplification spanning the whole ACKR1 gene locus (∼2.5 kilobases), amplicons generated from 81 samples with known genotypes were sequenced in a single read by using the Pacific Biosciences (PacBio) single molecule, real-time (SMRT) sequencing technology. Results High-quality sequencing reads were obtained for the 162 alleles (accuracy >0.999). Twenty-two nucleotide variations reported in databases were identified, defining 19 haplotypes four, eight, and seven haplotypes in 46 ACKR1*01, 63 ACKR1*02, and 53 ACKR1*02N.01 alleles, respectively. Discussion Overall, we have defined a subset of reference alleles by third-generation (long-read) sequencing. This technology, which provides a "longitudinal" overview of the loci of interest (several thousand base pairs) and is complementary to the second-generation (short-read) next-generation sequencing technology, is of critical interest for resolving novel, rare, and null alleles. Copyright © 2019 by S. Karger AG, Basel.Hemolytic disease of the fetus and newborn and fetal and neonatal alloimmune thrombocytopenia are caused by maternal antibodies against fetal alloantigens on red blood cells or platelets that are inherited from the father. After transplacental transport to the fetal circulation, antibodies of the IgG class may cause severe fetal anemia or bleeding complications. The indication for noninvasive fetal blood group genotyping is given if a clinically relevant antibody is detected in a pregnant woman and if the father is heterozygous (or unknown) for the implicated blood group allele. link2 This mini-review will focus on the advantages and current limitations of next-generation sequencing (NGS) for noninvasive diagnosis of fetal blood groups which is, in contrast to fetal aneuploidy screening, proposed only by some research groups. Targeted massively parallel sequencing of short DNA fragments from maternal cell-free plasma samples enables counting of fetal alleles for many single nucleotide polymorphisms in parallel. This information can be utilized for estimation of the fetal fraction of cell-free DNA (cfDNA) as well as detection of the paternal blood group allele in question. Adherence to a cut-off of ≥4% fetal fraction for reporting conclusive results is recommended to avoid false-negative results due to low fetal fraction. For screening purposes of fetal RHD in RhD-negative pregnant women, real-time PCR methods are very well established. However, for diagnostic purposes, the targeted amplicon-based NGS approach has the inherent capability to estimate the fetal fraction of cfDNA. In the future, improving the accuracy of NGS by consensus sequencing of single cfDNA molecules may enable reliable fetal blood group genotyping already in the first trimester of pregnancy. Copyright © 2020 by S. link3 Karger AG, Basel.

Autoři článku: Brandonnyborg6014 (Montoya Locklear)