Bradylykke9836

Z Iurium Wiki

Different cyclodextrin-calixarene nanosponges (CyCaNSs) have been characterized by means of FFC-NMR relaxometry, and used as sorbents to remove Pb2+ ions from aqueous solutions. Considering that the removal treatments may involve polluted waters with different characteristics, the adsorption experiments were performed on solutions without and with the addition of background salts, under different operational conditions. The adsorption abilities and affinities of the nanosponges towards Pb2+ ions were investigated by measuring the metal ion concentration by means of Inductively Coupled Plasma Emission Spectroscopy (ICP-OES) and Differential Pulse Anodic Stripping Voltammetry (DP-ASV). The acid-base properties of nanosponges and of metal ion as well as their interactions with the other interacting components of the systems have been considered in the evaluation of adsorption mechanism. Recycling and reuse experiments on the most efficient adsorbents were also performed. On the grounds of the results obtained, post-modified CyCaNSs appear promising materials for designing environmental remediation devices.Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.The progress of bio-based fluorescent smart materials and their multifunctional applications have attained increasing interest in the recent decades. Cellulose is among the cheapest and widespread raw material on earth which can be modified into diverse useful materials. This review summarizes the chemical modification of cellulose into smart fluorescent materials. This further highlights on the fabrication of the prepared fluorescent materials into films, fibers, paper strips, carbon dots, hydrogels and solutions which are applied for the sensing of toxic metals and anions, pH, bioimaging, common organic solvents, aliphatic and aromatic amines, nitroaromatics, fluorescent printing, coating, and anti-counterfeiting applications. Finally, the discussion about the upcoming investigations, challenges, and options open for the cellulose-based luminescence sensors are communicated. We believe that this review will appeal more and more attention and curiosity for the chemists, biochemists, and chemical engineers working with the synthesis of cellulose-based fluorescent materials for widespread applications.The flow properties of ionic polysaccharides are determined by the interplay of electrostatic and hydrophobic interactions, which depend on the ionic strength and pH of the solvent. We explore the LVE and LAOS rheology of carboxymethyl cellulose (CMC) in aqueous media, focusing on its gelling behaviour. We find that addition of HCl promotes gel formation and addition of NaOH suppresses it. The former effect is interpreted as being caused by a decrease of the charge density of the polymer, which facilitates interchain associations and the later effect can be assigned to solubilisation of cellulose backbone by NaOH. Our results along with a review of the literature allow us to establish the concentration regimes and associated properties of physical gels of carboxymethyl cellulose. At neutral pH, the storage modulus of NaCMC gels of varying molecular weight and DS at a given concentration does not vary by more than a factor 5.This study investigated the fungal community succession and volatile compound dynamics of Harbin dry sausage during a twelve-day fermentation using high-throughput internal transcribed spacer amplicon sequencing and headspace solid-phase microextraction gas chromatography-mass spectrometry. Aspergillus pseudoglaucus was found to be the primary species in the sausages during fermentation, whereas Lasiodiplodia theobromae, Alternaria alternata, Aspergillus caesiellus, and Trichosporon asahii were also prevalent. Additionally, a total of 72 volatile compounds were identified in the dry sausages, of which 24 key compounds (odor activity value > 1) dominated flavor development, including 3 aldehydes, 1 ketone, 4 alcohols, 9 esters, 4 alkenes, and 3 other compounds. Furthermore, correlation analysis suggested that most of the core fungi were positively correlated with the key volatile compounds, particularly A. Roscovitine supplier pseudoglaucus, Aspergillus gracilis, Trichosporon caseorum, Debaryomyces hansenii, and T. asahii. Our findings provide novel insights into the fungal ecology and flavor development of Harbin dry sausages.In this study we investigated the effect of the single strain in stabilization of type I sourdough microbial associations by crossing six different Fructilactobacillus sanfranciscensis with five Kazachstania humilis strains. Furthermore, we compared three predictive models, Zwitwering based on Gompertz's equation, Baranyi and Roberts' function and Schiraldi's function to evaluate which one best fitted the experimental data in determining the behaviour of co-cultivated microorganisms. Specific growth rates (μm) and lag time (λ) values for each mixed population were assessed. Results showed that the different F. sanfranciscensis strains significantly steer the growth kinetics within the pair and affect the ratio bacterial/yeast cells, as data analysis confirmed, whereas K. humilis accommodates to the bacterial strain. To compare the growth models, Root Mean Square (RMS) values were calculated for each predicted curve by implementing an algorithm based on an iterative process to minimize the deviation among observed and calculated data. Schiraldi's function performed better than the others, revealing, on average, the smallest RMS values and providing the best fitting for over 70% of co-cultivation experiments. Models prove to be consistent in predicting growth kinetics of microbial consortia too.Greece is a country possessing many cheese products granted with a PDO (Protected Designation of Origin) certificate, with high exporting activities. In this study, we analyzed six popular cheese PDO products purchased from different industries to assess their microbial communities using amplicon metabarcoding analysis. To this end, using Next Generation Sequencing technology, we sequenced the 16S rRNA gene and the ITS spacer for prokaryotes and fungi, respectively. Alpha diversity indices revealed higher bacterial species richness for some cheeses (Kopanisti, Batzos) and poor for others (Feta, Galotiri). Kopanisti, together with Kalathaki and Anevato, also presented increased species diversity concerning fungal populations. Results showed that lactic acid bacteria (LAB) prevailed the bacterial populations in all samples (Lactococcus, Lactobacillus, Streptococcus, Leuconostoc), whereas for fungi, members of the Saccharomycetaceae, Dipodascaceae and Debaryomycetaceae families prevailed the fungal populations. Several other genera were identified that make up each product's microbiome leading to the creation of the unique organoleptic attributes of Greek PDO cheeses. However, the identified species could not be directly linked to certain cheese types, assuming that starter and adjunct cultures, combined with the raw material used during production greatly impact the microbial communities in cheeses. Our data, produced for the first time for six Greek PDO cheeses, can be exploited in the process of creating a core microbial signature within each cheese type, supporting the Greek brand name and valorizing cheese products.In this study, we examined the ability of nisin A and a rationally assembled bank of 36 nisin derivative producing Lactococcus lactis strains to inhibit Listeria. A broth-based bioluminescence assay for screening single and combinations of bioengineered nisin derivatives using cell-free supernatants (CFS) from nisin derivative producing strains was developed. In this way, we screened 630 combinations of nisin derivative producing strains, identifying two (CFS from M17Q + N20P and M17Q + S29E) which exhibited enhanced anti-listerial activity when used together compared to when used alone, or to the nisin A producing strain. Minimal inhibitory concentration assays performed with purified peptides revealed than when used singly, the specific activities of M17Q, N20P and S29E (3.75-7.5 μM) against L. innocua were equal to, or less than that of nisin A (MIC of 3.75 μM). Broth-based growth curve assays using purified peptides demonstrated that use of the double peptide combinations and a triple peptide combination (M17Q + N20P + S29E) resulted in an extended lag phase of L. innocua, while kill curve assays confirmed the enhanced bactericidal activity of the combinations in comparison to the single derivative peptides or nisin A. Furthermore, the enhanced activity of the M17Q + N20P combination was maintained in a model food system (frankfurter homogenate) at both chill (4 °C) and abusive (20 °C) temperature conditions, with final cell numbers significantly less (1-2 log10 CFU/ml) than those observed with the derivative peptides alone, or nisin A. To our knowledge, this study is the first investigation that combines bioengineered bacteriocins with the aim of discovering a combination with enhanced antimicrobial activity.The antioxidant and antimicrobial effect of sesame oil (10, 30, and 50 g/kg) and sesamol (0.1, 0.3, and 0.5 g/kg) in meatballs during cold storage for 18 days at 3 ± 1 °C was investigated. Sesame oil and sesamol did not alter the sensory attributes of meatballs. Addition of either sesame oil or sesamol significantly delayed lipid oxidation when compared with control. Sesamol exhibited more potent antioxidant activities more than sesame oil. During storage, the aerobic plate counts (APCs) and Enterobacteriaceae counts (EBCs) were markedly (P less then 0.01) decreased in meatballs treated with sesame oil or sesamol in comparison with untreated control samples. Control meatballs showed signs of quality deterioration at day 7 of storage, while treated meatballs exhibited longer shelf lifes ranged from 9-18 days according to sesame oil or sesamol concentrations. Both sesame oil and sesamol induced marked (P less then 0.01) decline in the counts of E. coli O157H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Listeria monocytogenes that artificially inoculated to meatballs. Sesamol was more effective than sesame oil in the reduction of APCs, EBCs as well as foodborne pathogens. The results suggest that both sesame oil and sesamol are potentially useful natural additives to fresh meat products for improving its microbial quality and extending its shelf life during cold storage.

Autoři článku: Bradylykke9836 (Powell Dejesus)