Bradyalstrup6398
8 mmol O2/L/h, 222.49 U/mL, 325 U/mL, and 8.6 × 1010 CFU/mL, respectively. Compared with the bench-scale bioreactors, the 150 L fermenter showed a better oxygen transfer rate which affected the cell growth that doubled the number and enzymes production that increased. Then, the enzyme cocktail was used for a field test in a diesel source zone using a 5-spot well pattern. The results showed a significant reduction in concentrations of C10 - C50 (from 36% to > 99%) after one injection of enzyme cocktail, mainly for the contaminated soils located in the saturated zone of the unconfined aquifer. This study confirmed the scaling-up ofalkane-degrading enzyme production to an industrial-scale and its application for effective bioremediation of petroleum contaminated sites.Cyanobacteria such as Spirulina platensis secretes numerous biomolecules while consuming CO2 for photosynthesis which can reduce the environmental pollution as it can also be grown in wastewater. These biomolecules can be further processed in numerous pathways such as feed, fuel, pharmaceuticals, and nutraceuticals. This study aims to screen the potential molecular mechanisms of pigments from cyanobacteria as antidiabetic type-2 candidates through molecular docking. The activities of the test compounds were compared to commercial diabetic drugs, such as acarbose, linagliptin and polydatin. The results indicated that the binding affinity of pheophytin, β-carotene, and phycocyanobilin to α-amylase were 0.4, 2, and 2.6 kcal/mol higher than that of acarbose with α-amylase. Binding affinity between pheophytin, β-carotene, and phycocyanobilin with α-glucosidase were found to be comparable, which resulted 1.2, and 1.6 kcal/mol higher than that of acarbose with α-glucosidase. Meanwhile, binding activity of β-carotene and phycocyanobilin with DPP-IV were 0.5 and 0.3 kcal/mol higher than that of linagliptin with DPP-IV, whereas pheophytin, β-carotene, and phycocyanobilin with Glucose-6-phosphate dehydrogenase (G6PD) were 0.2, 1, and 1.4 kcal/mol higher from that of polydatin with G6PD. Moreover, pheophytin, β-carotene and phycocyanobilin were likely to inhibit α-amylase, α-glucosidase, and DPP-IV competitively, while uncompetitively for G6PD. Thus, the integration of molecular docking and experimental approach, such as in vitro and in vivo studies may greatly improve the discovery of true bioactive compounds in cyanobacteria for type 2 diabetes mellitus drugs and treatments.Intrinsically conductive polymers, polyaniline and polyaniline sulfonate (PASAni) were used to explore their effect on denitrification. Denitrification was accelerated 1.90 times by 2 mM PASAni and the possible mechanisms were mainly attributed to the accelerated electron transfer and the enhanced microbial metabolism activity. Intracellular electron transfer was accelerated by PASAni and the acceleration sites were from NADH to coenzyme Q (CoQ), quinone loop, from Complex II to CoQ and from QH2 to Cyt. c1. Extracellular electron transfer was accelerated because PASAni promoted more secretion of redox species and PASAni embedded in extracellular polymeric substance (EPS). Moreover, PASAni itselfprovided more electron transfer pathways as redox species. Microbial metabolism activity was also enhanced by PASAni, which was reflected in the increased nitrate/nitrite reductase activity (236.13/155.43%), electron transfer system activity (112.49%), adenosine triphosphate level (133.41%) and EPS content (189.06%). Besides, the enriched Proteobacteria in PASAni supplement system was also conducive to denitrification. This work provided fundamental information for conductive polymers mediating microbial electron transfer and enhancing contaminants biotransformation.Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their potential carcinogenic effect on humans. Flavopiridol It showed a characteristic efficiency towards the adsorptive removal of these compounds over a long period, i.e., eight continuous weeks, at ambient temperature and atmospheric pressure. After 8-weeks, the adsorbed amounts of these compounds were determined as 325.3 mg C7H7Cl, 247.6 mg CHCl3 and 253.3 mg CCl4 per g of γ-Al2O3, respectively. CCl4 was also found to be dissociatively adsorbed on the surface of γ-Al2O3, whereas CHCl3 and C7H7Cl were found to be associatively adsorbed. The prepared γ-Al2O3 has a relatively high surface area (i.e., 192.2 m2. g-1) and mesoporosity with different pore diameters in the range of 25-47 Å. Furthermore, environmental impacts of the nanocomposite γ-Al2O3 preparation were evaluated using life cycle assessment. For prepartion of adsorbent utilising 1 kg of scrap aluminium wire, it was observed that potential energy demand was 288 MJ, climate change potential was 19 kg CO2 equivalent, acidification potential was 0.115 kg SO2 equivalent and eutrophication potential was 0.018 kg PO43- equivalent.Marine sediment is considered a vast sink for organic pollutants including polycyclic aromatic hydrocarbons (PAHs). However, little is known about the relationship between subcritical PAH allocation and benthic microbial patterns. Thus, we carried out a field investigation at the abandoned Yellow River Delta (AYRD) to deepen the understanding of PAHs' horizontal distribution and ecological roles on the continental shelf. The PAH level in the AYRD is relatively low and distance-independent, indicating it resulted from long-term, chronic, anthropogenic input. The combined application of diagnostic molecular ratios reported inconsistent PAH sources, which might be due to the low PAH concentrations and the complexity of contributing sources. Positive Matrix Factorization provided a more robust source classification and identified three main PAH sources-coal combustion and vehicle emissions, petrogenic process, and fossil fuels. The benthic microbiome did not show a significant response to PAHs in terms of microbial assemblage or alpha-diversity. However, Operational Taxonomic Units in some specific phyla, like Thaumarchaeota, Proteobacteria, Acidobacteria, and Chytridiomycota, correlated with the PAH source indicators, supporting the notion that PAH source indicators can act as a novel environmental indicator for microbial adaption. What's more, Microbial Ecological Networks show more connection at sites identified as biomass combustion by both Fluoranthene/(Fluoranthene + Pyrene) and Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene) compared to the ones identified as biomass combustion by Fluoranthene/(Fluoranthene + Pyrene) and petroleum combustion by Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene). Herein, we demonstrate that the PAHs' source indicator can serve as a novel indicator of the interactions between microorganisms, and thus, should be applied to the sustainable management effort in the offshore area.The rapid start-up and operating characteristics of simultaneous partial nitrification, anammox, and denitrification (SNAD) process was investigated using synthetic wastewater with a low C/N ratio (COD NH4+-N = 200 mg/L 200 mg/L) in a novel upflow microaerobic membrane bioreactor (UMMBR). The average removal efficiencies of COD, NH4+-N, and TN in the stable phase were 89%, 96%, and 86%, respectively. Carmine granule, which coexisted with sludge floc, appeared on day 83. The high sludge concentration (12.9-17.2 g/L) and the upflow mode of the UMMBR could establish some anaerobicregions for anammox process. The anammox bacteria and short-cut denitrification (NO2-→N2) bacteria with activities of 4.46 mg NH4+-N/gVSS·h and 2.57 mg NO2--N/gVSS·h contributed TN removal of 39% and 61% on day 129, respectively. High-throughput sequencing analysis revealed that the ammonia-oxidizing archaea (AOA, 49.45% in granule and 17.05% in sludge floc) and ammonia-oxidizing bacterial (AOB, 1.30% in sludge floc) dominated the nitrifying microbial community. Candidatus Jettenia (47.14%) and Denitratisoma (10.92%) mainly existed in granule with positive correlations. Some heterotrophic bacteria (OLB13, SJA-15, 1-20, SBR1031, and SJA-28) in sludge floc benefited system stability and sludge activity and protected Candidatus Jettenia from adverse environments.In recent years, tremendous interest has been generated in MXenes as a fast-growing and diversified family of two-dimensional (2D) materials with a wide range of potential uses. MXenes exhibit many unique structural and physicochemical properties that make them particularly attractive as adsorbents for removing heavy metals from aqueous media, including a large surface area, abundant surface terminations, electron-richness, and hydrophilic nature. In light of the adsorption capabilities of MXenes at the ever-increasing rate of expansion, this review investigates the recent computational predictions for the adsorption capabilities of MXenes and the effect of synthesis of different MXene on their remediation behavior toward heavy metals. The influence of MXene engineering strategies such as alkalization, acidification, and incorporation into organic and inorganic hosts on their surface properties and adsorption capacity is compared to provide critical insights for designing effective MXene adsorbents. Additionally, the review discusses MXenes' adsorption mechanisms, the effect of coexisting ions on MXenes' selectivity, the regeneration of exhausted MXenes, and provides an overview of MXenes' stability and biocompatibility to demonstrate their potentiality for wastewater remediation. Finally, the review identifies current flaws and offers recommendations for further research.Photocatalytic degradation technology is regarded as a promising technology for dye-contained wastewater treatment due to its superior efficiency and recycling. The key to the implementation of photocatalytic degradation technology is the selection of sunlight-active photocatalyst. Graphitic carbon nitride (g-C3N4) photocatalyst has been put into a lot of research in the field of organic pollutant degradation because of its low cost, suitable electronic structure and high chemical stability. In this perspective review, we comprehensively discuss the recent advance of photocatalytic dyes degradation over g-C3N4-based materials. The properties, structure and preparation methods of g-C3N4 are briefly introduced. Furthermore, the progress in improving the degradation efficiency of g-C3N4-based photocatalyst is highlighted in the article. The possible pathways and different active species for dyes decomposition are also summarized. We expect this review can provide instructive application of g-C3N4-based catalysts for environmental remediation.Nanoparticles like nano-TiO2 are suspected to influence the bioavailability and toxicity of co-existing organic or inorganic pollutants differently in aquatic environment. Recently, bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a novel brominated flame retardants (NBFRs) with potential lipid-metabolism disruptive effects, has been detected prevalently in multiple environments including where nano-TiO2 was also observed. However, their interaction in aqueous phase and modification of nano-TiO2 on biological processes and toxicity of TBPH at environmental relevant levels remain unknown. Accordingly, we exposed zebrafish embryos to TBPH (1, 10, 100 and 1000 μg/L) alone or with nano-TiO2 (100 μg/L) until 72 h post-fertilization (hpf) with emphasis on their physicochemical interactions in solutions and variations of bioavailability and toxicity regarding lipid metabolism in vivo. Zeta potential, fourier transform infrared (FTIR) spectroscopy and TEM-EDS revealed adsorption and agglomeration between TBPH and nano-TiO2in vitro.