Bradfordgram5504
We report the colloidal synthesis of quaternary kesterite CZTS-CZTSe heterostructures via anion exchange reactions on a kesterite CZTS template. The crystal phase selectivity during the synthesis (kesterite vs. wurtzite) is due to the initial nucleation of cubic Cu9S5 seeds, followed by incorporation of Zn and Sn. Upon injection of Se-precursor, which triggered simultaneous anion exchange and overgrowth of the pristine CZTS template, sandwich CZTS-CZTSe (core-tip) nanoheterostructures were obtained. X-ray photoelectron spectroscopy (XPS) and optical band gap measurement results suggest a change of intrinsic electronic structure of CZTS by Se-treatment. Our study not only provides insight into mechanisms of formation of kesterite CZTS nanocrystals (NCs) and subsequent anion exchange reactions, but also opens doors to access novel CZTSSe nanostructures for potential applications.The electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand challenge due to the sluggish kinetics of the oxygen evolution reaction (OER) in electrolyzing water. Herein, we present a single atomic Mn site anchored on a boron nitrogen co-doped carbon nanotube array (Mn-SA/BNC), which is perfectly combined with the hydrazine electrooxidation reaction (HzOR) boosted water electrolysis concept. The obtained catalyst achieves 51 mV overpotential at the current density of -10 mA cm-2 for the cathodic HER and 132 mV versus the reversible hydrogen electrode for HzOR, respectively. Besides, in a two-electrode overall hydrazine splitting (OHzS) system, the Mn-SA/BNC catalyst only needs a cell voltage of only 0.41 V to output 10 mA cm-1, with strong durability and nearly 100% faradaic efficiency for H2 production. This work highlights a low-cost and high-efficiency energy-saving H2 production pathway.The dissolution of polysulfides in an electrolyte is a thermodynamically favorable process, which in theory means that the shuttle effect in lithium-sulfur batteries (LSBs) cannot be completely suppressed. So, it is very important to modify the separator to prevent the migration of polysulfides to the lithium anode. The traditional coating modification process of the separator is cumbersome and uses a solvent that is harmful to the environment, and too many inactive components affect the overall energy density of the battery. It is thus imperative to find a simple and environmentally friendly modification process of the separator. In this study, a fast chemical film-forming method is proposed to modify the separator of a lithium-sulfur battery using tannic acid (TA) and cobalt ions (Co2+). This method requires only simple steps and environmentally friendly raw materials to obtain a thin coating (only 5.83 nm) that can effectively inhibit the shuttle effect. The lithium-sulfur battery with the TA-Co separator shows superior long cycle performance. After 500 cycles at 0.5 C, the capacity decay rate of each cycle is only 0.065%. On the other hand, the TA-Co separator can inhibit the growth of lithium dendrites and help to build a stable lithium anode, which can exhibit minimal polarization (56 mV) in a lithium-lithium symmetrical battery at the current density of 2 mA cm-2. The rapid and simple modification method proposed in this study has a certain reference value for the future large-scale application of lithium sulfur batteries.Mitochondria are the main sites for the production of hypochlorite (OCl-). The protein adenine nucleotide translocase (ANT) is located in the inner mitochondria membrane, which is mainly participated in the transportation of ions and metabolites. At the cellular organelle level, overexpression of ANT is associated with enhanced production of OCl-, however, abnormal levels of OCl- cause redox imbalance and loss of function of mitochondria. Herein, a novel mitochondria-targeted ratiometric fluorescent probe Mi-OCl-RP has been developed. Molecular docking calculation suggested a potential molecular target for the probe in the ANT, and the high binding energy (-8.58 kcal mol-1) may explain the high mitochondria selectivity of Mi-OCl-RP. The unique probe exhibits excellent spectral properties including ratiometric fluorescence response signals to OCl- (within 7 s), high selectivity and sensitivity, and a large Stokes shift (278 nm). In addition, the colocalization coefficient confirms that Mi-OCl-RP can effectively target mitochondria. Furthermore, Mi-OCl-RP has low toxicity and good permeability, and was successfully employed in ratiometric imaging of OCl-in vivo, affording a robust molecular tool for investigating the biological functions of OCl- in living systems.Incorporation of nanoparticles has been considered as an efficient method for enhancing the adsorption performance of metal-organic frameworks (MOFs). Pirtobrutinib Alkali metal compounds possess outstanding affinity to acidic CO2. In this study, a robust self-conversion strategy is reported for improving the carbon capture performance of MOFs, through directly transforming partial metal centers to basic carbonate (BC) nanoparticles. Based on the hydrolysis of coordination bonds induced by water impurity in solvents and the decarboxylation of linkers under thermal and alkaline conditions, the self-loading of BC in MOFs can be realized by solvent vapor-assisted thermal treatment. Since water impurity causes limited self-conversion and excess organic solvent can purify MOFs, the BC-MOF materials maintain good crystallinity and even show superior porosity. Owing to the increased specific surface areas, open metal sites, and alkalinity of BC, the prepared MOF composites exhibit substantially improved CO2 capture performance with good balance between capacity and selectivity. For example, after self-conversion with ethanol solvent, the CO2 adsorption capacity and CO2/N2 (15 85) selectivity at 298 K and 100 kPa increase from 3.7 mmol g-1 and 11.4 to 5.8 mmol g-1 and 29.2, respectively.The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.