Bradfordfrandsen0474
This article proposes a conceptual and methodological framework for analyzing agroecosystem resilience, in which aspects such as agrarian structure and peasant community agency are included as determining factors. The methodology is applied to a comparison of two peasant communities in Latin America (Brazil and Colombia), emphasizing the capacity to transform unsustainable power structures in place of adapting to them. We find that when agrarian structure is more equitable and peasant agency is strongly developed through political formation, organization and women's participation, then there is a greater construction of resilience that improves peasant livelihoods and dignity. This application demonstrates that when agency is strongly developed, as in the case of Brazil, it is possible to transform structural conditions that restrict resilience. The inclusion and consideration of biophysical variables, management practices, agrarian structure and agency, through a participatory approach, allows for the identification of factors that inhibit or potentiate the resilience of agroecosystems.At the molecular level, the circadian clock is regulated by a time delayed transcriptional-translational feedback loop in which the core proteins interact with each other rhythmically to drive daily biological rhythms. The C-terminal domain of a key clock protein PER2 (PER2c) plays a critically important role in the loop, not only for its interaction with the binding partner CRY proteins but also for the CRY/PER complex's translocation from the cytosol to the nucleus. Previous circular dichroism (CD) spectroscopic studies have shown that mouse PER2c (mPER2c) is less structured in solution by itself but folded into stable secondary structures upon interaction with mouse CRYs. To understand the stability and folding of human PER2c (hPER2c), we expressed and purified hPER2c. Three oligomerization forms of recombinant hPER2c were identified and thoroughly characterized through a combination of biochemical and biophysical techniques. Different to mPER2c, both thermal unfolding DLS and CD analyses suggested that all forms of hPER2c have very stable secondary structures in solution by themselves with melting temperatures higher than the physiological body temperature, indicating that hPER2c does not require CRY to fold. Furthermore, we examined the effects of EDTA, salt concentration, and a reducing agent on hPER2c folding and oligomerization. The ability of hPER2c forming oligomers reflects the potential role of hPER2c in the assembly of circadian rhythm core protein complexes.Dosimetry is an important tool for triage and treatment planning following any radiation exposure accident, and biological dosimetry, which estimates exposure dose using a biological parameter, is a practical means of determining the specific dose an individual receives. The cytokinesis-blocked micronucleus assay (CBMN) is an established biodosimetric tool to measure chromosomal damage in mitogen-stimulated human lymphocytes. The CBMN method is especially valuable for biodosimetry in triage situations thanks to simplicity in scoring and adaptability to high-throughput automated sample processing systems. While this technique produces dose-response data which fit very well to a linear-quadratic model for exposures to low linear energy transfer (LET) radiation and for doses up for 5 Gy, limitations to the accuracy of this method arise at larger doses. Accuracy at higher doses is limited by the number of cells reaching mitosis. Whereas it would be expected that the yield of micronuclei increases with the dose, ies were fitted to take into account the turnover phenomenon observed at higher doses, best fitting was achieved when the combination of both inhibitors was used. These techniques permit reliable dose reconstruction after high doses of radiation with a method that can be adapted to high-throughput automated sample processing systems.Recent work has indicated that anthropogenic pollution of floral-scent may have negative impacts on bumblebee foraging behavior. We need quantitative tools to both measure how much pollution of a learned floral-odor bumblebees can tolerate and identify which scent-pollutants are problematic. This study used encoding characteristics of insect olfactory systems to develop a new paradigm for quantifying complex odors. This 'Compounds Without Borders' method builds multidimensional vectors of scents based on physiologically relevant physical characteristics of component odorant-compounds. The angular distance between CWB-vectors then provides a single quantitative variable describing how similar (or dissimilar) two complex odors are. This angular representation of odor similarity is predictive of bumblebees' behavior in an associative odor learning task.Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. Selleckchem AP-III-a4 While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.BACKGROUND Mitophagy, a selective autophagy process, plays various roles in tumors. Prohibitin 2 (PHB2) is an inner-mitochondrial membrane protein that participates in parkin-induced mitophagy. However, the role of PHB2 in non-small cell lung carcinoma (NSCLC) has not been previously reported. MATERIAL AND METHODS PHB2 protein or PHB2-mRNA in NSCLC and paired normal tissues was determined by Western blot, qRT-PCR, and immunohistochemical staining. Cell proliferation was detected by CCK-8 assay. Cell migration was evaluated by wound healing and transwell migration assays. A 3D live-cell confocal system was used to monitor autophagic flux. Mitochondrial autolysosomes were observed by transmission electron microscopy (TEM). Finally, we performed JC-1 assay to measure mitochondrial membrane potential (MMP). RESULTS The level of PHB2 was significantly increased in human NSCLC specimens compared to paired adjacent specimens. Inhibition of PHB2 expression attenuated mitophagy in A549 and H1299 cells, as indicated by decreased levels of LC3 II/I and parkin markers and increased level of p62 protein. Furthermore, the inhibition caused reduction in mitochondrial autolysosomes and autophagic flux, as shown by TEM and live-cell imaging, respectively. In addition, PHB2 inhibition caused a remarkable increase in MMP and suppressed the proliferation and migration of A549 and H1299 cells. CONCLUSIONS Our results suggest that downregulation of PHB2 reduced parkin-mediated mitophagy, which suppressed proliferation and migration of A549 and H1299 cells.Fluorescence Lifetime Imaging (FLIM) in life sciences based on ultrashort laser scanning microscopy and time-correlated single photon counting (TCSPC) started 30 years ago in Jena/East-Germany. One decade later, first two-photon FLIM images of a human finger were taken with a lab microscope based on a tunable femtosecond Tisapphire laser. In 2002/2003, first clinical non-invasive two-photon FLIM studies on patients with dermatological disorders were performed using a novel multiphoton tomograph. Current in vivo two-photon FLIM studies on human subjects are based on TCSPC and focus on (i) patients with skin inflammation and skin cancer as well as brain tumors, (ii) cosmetic research on volunteers to evaluate anti-ageing cremes, (iii) pharmaceutical research on volunteers to gain information on in situ pharmacokinetics, and (iv) space medicine to study non-invasively skin modifications on astronauts during long-term space flights. Two-photon FLIM studies on volunteers and patients are performed with multiphoton FLIM tomographs using near infrared femtosecond laser technology that provide rapid non-invasive and label-free intratissue autofluorescence biopsies with picosecond temporal resolution.An easy to make organic probe (hereafter called as R) possessing multiple ligating sites have been synthesized and characterized using spectral techniques. The probe exhibits selective and sensitive turn-on fluorescence response with Al(III) in aqueous dimethylformamide (DMF) (11 v/v) solution. Fluorescence titration experiment shows that the probe binds with Al(III) with a 11 stoichiometry and a binding constant of 6.6 × 104 M-1.The mode of coordination of R with Al(III) has been established suing 27Al and 1H NMR studies and the results suggest formation of an octahedral complex been them. The suggested point of attachment of R with Al(III) corroborates well with Density Functional Theory (DFT) optimized structure and Mulliken charges computed. Chelation-enhanced fluorescence (CHEF) is proposed as the mechanism of enhancement of fluorescence upon addition of Al(III) to R. The probe detects Al(III) in aqueous solution with a detection limit of 0.2 μM, which is much lower than the permissible limit of Al(III) set by the World Health Organization (WHO).The probe works in a wide pH range (4-11) and thus makes it a suitable candidate for environmental and biological applications. The fluorescence signals of R were used to construct an INHIBIT molecular logic gate. The confocal fluorescence microscope experiments show that R could be employed as a fluorescent probe for detecting Al(III) in living cells.BACKGROUND Anti-SARS-CoV-2 virus antibody levels in convalescent plasma (CP), which may be useful in severe Anti-SARS-CoV-2 virus infections, have been rarely reported. RESULTS A total of eight donors were considered for enrollment; two of them were excluded because of ineligible routine check. Of the six remaining participants, five samples were tested weakly positive by the IgM ELISA. Meanwhile, high titers of IgG were observed in five samples. The patient treated with CP did not require mechanical ventilation 11 days after plasma transfusion, and was then transferred to a general ward. CONCLUSIONS Our serological findings in convalescent plasma from recovered patients may help facilitate understanding of the SARS-CoV-2 infection and establish CP donor screening protocol in COVID-19 outbreak. METHODS Anti-SARS-CoV-2 antibodies including IgM and IgG were measured by two enzyme-linked immunosorbent assays (ELISA) in convalescent plasma from six donors who have recovered from coronavirus disease 2019 (COVID-19) in Nanjing, China.