Bowleskirkland1979
The screening tool of the Integrated Care for Older People (ICOPE Step 1), designed to detect declines in the domains of intrinsic capacity, has been incipiently investigated in older adult populations.
To retrospectively estimate the frequency of priority conditions associated with declines in intrinsic capacity according to an adaptation of the screening tool ICOPE Step 1 among participants of the Multidomain Alzheimer Preventive Trial (MAPT).
A cross-sectional retrospective analysis from the baseline assessment of the MAPT.
The data was gathered during a preventive consultation for cardiovascular risk factors in memory clinics in France.
Seven hundred fifty-nine older adults aged 70-89 years with memory complaints, allocated to the multidomain groups of the MAPT study.
Five domains of intrinsic capacity (cognition, locomotion, nutrition, sensorial, and psychological) were assessed using a screening tool similar to the ICOPE Step 1 (MAPT Step 1). The frequency of six conditions associated with dscreened with an adaptation of the ICOPE step 1 (MAPT step 1) tool, 9/10 older adults had one or more conditions associated with declines in intrinsic capacity. The relative frequency differs across conditions and could probably be lower in a population without memory complaints. The frequency of screened conditions associated with declines in IC highlights how relevant it is to develop function-centered care modalities to promote healthy aging.Aging is the most important risk factor for the onset of several chronic diseases and functional decline. Understanding the interplays between biological aging and the biology of diseases and functional loss as well as integrating a function-centered approach to the care pathway of older adults are crucial steps towards the elaboration of preventive strategies (both pharmacological and non-pharmacological) against the onset and severity of burdensome chronic conditions during aging. In order to tackle these two crucial challenges, ie, how both the manipulation of biological aging and the implementation of a function-centered care pathway (the Integrated Care for Older People (ICOPE) model of the World Health Organization) may contribute to the trajectories of healthy aging, a new initiative on Gerosciences was built the INSPIRE research program. The present article describes the scientific background on which the foundations of the INSPIRE program have been constructed and provides the general lines of this initiative that involves researchers from basic and translational science, clinical gerontology, geriatrics and primary care, and public health.Numerous methodologies to obtain pyridines from ylidenemalononitriles are described in the literature. Nevertheless, they are limited to the use of microwave or conventional heat and few lead to 2,3,4 or 2,3,4,5-substituted pyridines as multi-proposal molecular scaffolds or even universal pyridines. Herein, we present a mild and facile solvent-free methodology to obtain a scope of multi-substituted pyridines at room temperature. We also report an example where one of the resulting amino-nicotinonitriles exhibits a preliminary evidence of aggregation-induced emission (AIE).Gold nanoclusters (AuNCs) are among the most promising organic-inorganic hybrid luminescent materials for various applications. The current development of AuNCs majorly focuses on controlling their luminescence properties. Herein, we report a new strategy to facilely construct two different nanocomposites featuring enhanced photoluminescence based on mercaptopropionic acid-protected AuNCs (MPA-AuNCs). Through co-assembly with Zn2+ and 2-methylimidazole (2M-IM), the weak luminescence of MPA-AuNCs evolved into either intense blue-green or orange emission at different concentration ratios of additives. HR-TEM and spectroscopic characterization studies revealed that the intense blue-green emission was ascribed to the formation of ZnS quantum dots (QDs) on the outer surface of AuNCs (AuNCs@ZnS), while the strong orange emission originated from the primitive MPA-AuNC core encapsulated by a cubic ZIF-8 shell (AuNCs@ZIF-8). The AuNCs@ZnS nanocomposite was further applied as an exceptional chemical sensor for selective detection of Pb2+ and Fe3+via different quenching mechanisms, and the AuNCs@ZIF-8 composite was applied for fabricating light-converting devices. The co-assembly of AuNCs with Zn2+ and imidazole derivatives provides a facile strategy for acquiring differentiated nanomaterials that have versatile potential applications in chemical detection and light-converting devices.The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. https://www.selleckchem.com/products/ch5183284-debio-1347.html The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.Here I present a fully ab initio time-resolved study of X-ray attosecond transient absorption spectroscopy (ATAS) in a prototypical polyatomic molecule, pyrazine, and demonstrate the possibility of retrieving the many-electron quantum ionic coherences arising in attosecond molecular photoionisation and pre-determining the subsequent charge-directed photochemical reactivity. Advanced first-principles many-electron simulations are performed, within a hybrid XUV pump/X-ray probe setup, to describe the interaction of pyrazine with both XUV pump and X-ray probe pulses, and study the triggered correlated many-electron dynamics. The calculations are carried out by means of the recently-developed ab initio method for many-electron dynamics in polyatomic molecules, the time-dependent (TD) B-spline Restricted Correlation Space-Algebraic Diagrammatic Construction (RCS-ADC). RCS-ADC simulates molecular ionisation from first principles, combining the accurate description of electron correlation of quantum chemistry with the full account of the continuum dynamics of the photoelectron.