Bowersvilladsen2302

Z Iurium Wiki

Organic pesticides are major sources of soil pollution in agricultural lands. Most of these pesticides are persistent and tend to bio accumulate in humans upon consumption of contaminated plants. In this study, we investigate different natural soil samples that were collected from agricultural lands. The samples revealed the presence of 18 pesticides that belong to four different groups including organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The photocatalytic degradation of the five most abundant pesticides was studied in the presence and absence of 1% TiO2 or ZnO photocatalysts under UV irradiation at a wavelength of 306 nm. The five abundant pesticides were Atrazine (OCP), Chlorpyrifos methyl (OPP), Dimethoate (OPP), Heptachlor (OCP), and Methomyl (Carb). The results showed that photolysis of all pesticides was complete under UV radiation for irradiation times between 64-100 h. However, both photocatalysts enhanced photocatalytic degradation of the pesticides in comparison with photolysis. The pesticides were photocatalytically degraded completely within 20-24 h of irradiation. The TiO2 photocatalyst showed higher activity compared to ZnO. The organochlorine heptachlor, which is very toxic and persistent, was completely degraded within 30 h using TiO2 photocatalyst for the first time in soil. The mechanism of photocatalytic degradation of the pesticides was explained and the effects of different factors on the degradation process in the soil were discussed.Aphis craccivora Koch is a polyphagous and major pest of leguminous crops causing significant damage by reducing the yield. Repeated application of synthetic insecticides for the control of aphids has led to development of resistance. Therefore, the present study aimed to screen the insecticidal activity of root/stem extracts/fractions, and pure molecules from Cissampelos pareira Linnaeus against A. craccivora for identification of lead(s). Among root extract/fractions, the n-hexane fraction was found most effective (LC50 = 1828.19 mg/L) against A. craccivora, followed by parent extract (LC50 = 2211.54 mg/L). Among stem extract/fractions, the n-hexane fraction (LC50 = 1246.92 mg/L) was more effective than the water and n-butanol fractions. Based on GC and GC-MS analysis, among different compounds identified in the n-hexane fraction of root and stem, ethyl palmitate (known to possess insecticidal activity) was present in the highest concentration (24.94 to 52.95%) in both the fractions. Among pure molecules, pareirarineformate was found most effective (LC50 = 1491.93 mg/L) against A. craccivora, followed by cissamine (LC50 = 1556.31 mg/L). Parent extract and fractions of C. pareira possess promising activity against aphid. Further, field bio-efficacy studies are necessary to validate the current findings for the development of botanical formulation.Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.The aim of this study was to investigate the impact that shear and composition have on the structural properties associated with the porous phases of lipids. To accomplish this aim, we developed eight main crystallized samples using cocoa butter (CB) or trilaurin (TL) in the presence or absence of monostearate (M) (5% w/w). The samples were sheared at 500 s-1 using random (RS) or laminar (LS) shear at a cooling rate of 2 °C/min. Using the maximal ball (MB) algorithm, several empirical void measurements such as connectivity (z), pore and throat volume weighted radii (R43), and void fraction (v) were quantified using 3D X-ray microcomputed tomography images. Most void features were identified as micropores (R ≥ 10 μm) possibly originating from the crystallization process and post-process crystal growth. Likewise, depending on the applied treatments, mechanisms impacting void formation were found to produce noticeable variation in v (0.019 to 0.139) and to determine whether void morphology was spherical, irregular, and/or highly connected.Glycerol and aminophenol intermolecular condensation has been investigated through a milling and microwave-assisted sequential strategy, towards the synthesis of a benzoxaxine derivative. Mechanochemical activation prior to the microwave-assisted process could improve the probability of contact between the reagents, and greatly favors the higher conversion of aminophenol. At the same time, following a mechanochemical-microwave sequential approach could tune the selectivity towards the formation of a benzoxazine derivative, which could find application in a wide range of biomedical areas.We report a new method for a tandem Pd-catalyzed intramolecular addition of active methylene compounds to internal alkynes followed by coupling with aryl and heteroaryl bromides. Highly substituted vinylidenecyclopentanes were obtained with good yields, complete selectivity, and excellent functional group tolerance. A plausible mechanism, supported by DFT calculations, involves the oxidative addition of bromoarene to Pd(0), followed by cyclization and reductive elimination. The excellent regio- and stereoselectivity arises from the 5-exo-dig intramolecular addition of the enol form of the substrate to alkyne activated by the π-acidic Pd(II) center, postulated as the rate-determining step.Aquilaria sinensis (Lour.) Spreng is known for its resinous secretion (agarwood), often secreted in defense against injuries. We investigated the effects of A. sinensis flower extract (AF) on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake, and lipid accumulation (adipogenesis). Activation of PPARα, PPARγ and LXR was determined in hepatic (HepG2) cells by reporter gene assays. learn more Glucose uptake was determined in differentiated muscle (C2C12) cells using 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose). Adipogenesis was determined in adipocytes (3T3-L1 cells) by Oil red O staining. At a concentration of 50 µg/mL, AF caused 12.2-fold activation of PPARα and 5.7-fold activation of PPARγ, while the activation of LXR was only 1.7-fold. AF inhibited (28%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (32.8%) in muscle cells at 50 μg/mL. It was concluded that AF acted as a PPARα/γ dual agonist without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. This is the first report to reveal the PPARα/γ dual agonistic action and glucose uptake enhancing property of AF along with its antiadipogenic effect, indicating its potential in ameliorating the symptoms of metabolic syndrome.Jua (juá in Portuguese) is an underexplored fruit from Brazil's northeast. This fruit is rich in antioxidant substances. However, there is a dearth of information about jua's bioactive potential. The present study evaluated two extraction methods (continuous agitation and ultrasound-assisted extraction-UAE) and employed three different solvents (water, ethanol, and acetone) to efficiently recover soluble phenolic compounds. Aqueous extracts obtained by UAE showed the highest total phenolic content (TPC) and antiradical activity. Besides being an eco-friendly procedure, extraction and/or solubility in an aqueous medium is also important for food application. Ellagic acids were the predominant phenolics (80%) found in aqueous jua pulp extract obtained by UAE, as determined by HPLC, while its TPC was 405.8 gallic acid equivalent per gram of fruit. This extract also exhibited a higher scavenging activity towards peroxyl radicals when compared to that of several other fruits from the literature, including grape, strawberry, cranberry, and walnuts, which are known references in terms of antioxidants. This is the first report that demonstrates jua pulp's potential as an alternative source of ellagic acid and other phenolic acids and flavonoids. Therefore, the outcome of this study provides new information that can be useful for functional food and nutraceutical industries.Ginsenoside Rh2 increases the efficacy of doxorubicin (DOX) treatment in murine models of solid and ascites Ehrlich's adenocarcinoma. In a solid tumor model (treatment commencing 7 days after inoculation), DOX + Rh2 co-treatment was significantly more efficacious than DOX alone. If treatment was started 24 h after inoculation, the inhibition of tumor growth of a solid tumor for the DOX + Rh2 co-treatment group was complete. Furthermore, survival in the ascites model was dramatically higher for the DOX + Rh2 co-treatment group than for DOX alone. Mechanisms underlying the combined DOX and Rh2 effects were studied in primary Ehrlich's adenocarcinoma-derived cells and healthy mice's splenocytes. Despite the previously established Rh2 pro-oxidant activity, DOX + Rh2 co-treatment revealed no increase in ROS compared to DOX treatment alone. However, DOX + Rh2 treatment was more effective in suppressing Ehrlich adenocarcinoma cell adhesion than either treatment alone. We hypothesize that the benefits of DOX + Rh2 combination treatment are due to the suppression of tumor cell attachment/invasion that might be effective in preventing metastatic spread of tumor cells. Ginsenoside Rh2 was found to be a modest activator in a Neh2-luc reporter assay, suggesting that Rh2 can activate the Nrf2-driven antioxidant program. Rh2-induced direct activation of Nrf2 might provide additional benefits by minimizing DOX toxicity towards non-cancerous cells.In snow, water coexists in solid, liquid and vapor states. The relative abundance of the three phases drives snow grain metamorphism and affects the physical properties of the snowpack. Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a snowpack because different snow layers have different permeabilities; therefore, it is important to track sudden changes in the amount of liquid water within a specific layer. We reproduced water percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as reflected by the fitting coefficient c.

Autoři článku: Bowersvilladsen2302 (Povlsen Tennant)