Bowenobrien2490
Cell apoptosis was detected by western blotting and TUNEL staining. Tanshinone IIA (10 mg/kg/day, intraperitoneal administration) significantly reduced brain water content and vascular permeability at 12, 24, 48, and 72 h after TBI. Tanshinone IIA downregulated the mRNA expression levels of various factors induced by TBI, including CD11, IL-1β, and TNF-α. Notably, CD11 mRNA downregulation suggested that Tanshinone IIA inhibited microglia activation. Further results showed that Tanshinone IIA treatment significantly downregulated AQP4 and GFAP expression. TBI-induced oxidative stress and apoptosis were markedly reversed by Tanshinone IIA, with an increase in SOD and GSH-PX activities and a decrease in the MDA content. Moreover, Tanshinone IIA decreased TBI-induced NADPH oxidase activation via the inhibition of p47phox. Tanshinone IIA attenuated TBI, and its mechanism of action may involve the inhibition of oxidative stress and apoptosis.Glioblastoma multiforme (GBM) is the most hostile tumor in the central nervous system. Unfortunately, the prognosis of GBM patients is poor following surgical interventions, chemotherapy, and radiotherapy. Consequently, more efficient and effective treatment options for the treatment of GBM need to be explored. Zerumbone, as a sesquiterpene derived from Zingiber zerumbet Smith, has substantial cytotoxic and antiproliferative activities in some types of cancer. Here, we show that exposure of GBM cells (U-87 MG) to Zerumbone demonstrated significant growth inhibition in a concentration-dependent manner. Zerumbone also induced apoptosis and caused cell cycle arrest of human GBM U-87 MG cells in the G2/M phase of the cell cycle. In detail, the apoptotic process triggered by Zerumbone involved the upregulation of proapoptotic Bax and the suppression of antiapoptotic Bcl-2 genes expression as determined by qRT-PCR. Moreover, Zerumbone enhanced the generation of reactive oxygen species (ROS), and N-acetyl cysteine (NAC), as an antioxidant, reversed the ROS-induced cytotoxicity of U-87 MG cells. The Western blot analysis suggested that Zerumbone activated the NF-κB p65, which was partly inhibited by NAC treatment. Collectively, our results confirmed that Zerumbone induces cytotoxicity by ROS generation. Thus, the study raises the possibility of Zerumbone as a potential natural agent for treating GBM due to its ability to induce cytotoxicity.Introduction Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2. Methods The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. BMS-354825 Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR. Results The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Conclusion Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision.Background Quantification of extracellular volume (ECV) fraction by cardiovascular magnetic resonance (CMR) has emerged as a noninvasive diagnostic tool to assess myocardial fibrosis. Secreted frizzled-related protein 2 (SFRP2) appears to play an important role in cardiac fibrosis. We aimed to evaluate the association between SFRP2 and myocardial fibrosis and the prognostic value of ECV fraction in patients with heart failure (HF). Methods In this prospective cohort study, 72 hospitalized adult patients (age ≥ 18 years) with severe decompensated HF were included. CMR measurements and T1 mapping were performed to calculate ECV fraction. Serum SFRP2 level was detected by an enzyme-linked immunosorbent assay kit. All patients were followed up, and the primary outcomes were composite events including all-cause mortality and HF hospitalization. Results During the median follow-up of 12 months, 27 (37.5%) patients experienced primary outcome events and had higher levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), SFRP2, and ECV fraction compared with those without events. In Pearson correlation analysis, levels of SFRP2 (r = 0.33), high-sensitivity C-reactive protein (r = 0.31), and hemoglobin A1c (r = 0.29) were associated with ECV fraction (all P less then 0.05); however, in multivariate linear regression analysis, SFRP2 was the only significant factor determined for ECV fraction (r partial = 0.33, P = 0.02). In multivariate Cox regression analysis, age (each 10 years, hazard ratio (HR) 1.13, 95% confidence interval (CI) 1.04-1.22), ECV fraction (per doubling, HR 1.68, 95% CI 1.03-2.74), and NT-proBNP (per doubling, HR 2.46, 95% CI 1.05-5.76) were independent risk factors for primary outcomes. Conclusions Higher ECV fraction is associated with worsened prognosis in HF. SFRP2 is an independent biomarker for myocardial fibrosis. Further studies are needed to explore the potential therapeutic value of SFRP2 in myocardial fibrosis.The global population above 60 years has been growing exponentially in the last decades, which is accompanied by an increase in the prevalence of age-related chronic diseases, highlighting cardiovascular diseases (CVDs), such as hypertension, atherosclerosis, and heart failure. Aging is the main risk factor for these diseases. Such susceptibility to disease is explained, at least in part, by the increase of oxidative stress, in which it damages cellular components such as proteins, DNA, and lipids. In addition, the chronic inflammatory process in aging "inflammaging" also contributes to cell damage, creating a stressful environment which drives to the development of CVDs. Taken together, it is possible to identify the molecular connection between oxidative stress and the inflammatory process, especially by the crosstalk between the transcription factors Nrf-2 and NF-κB which are mediated by redox signalling and are involved in aging. Therapies that control this process are key targets in the prevention/combat of age-related CVDs. In this review, we show the basics of inflammation and oxidative stress, including the crosstalk between them, and the implications on age-related CVDs.Oxidative stress and mitochondrial dysfunction are related to disease pathogenesis. Oligodeoxynucleotide containing CpG motifs (CpG ODN) demonstrate possibilities for immunotherapy applications. The aim of the present work is to explore the underlying mechanism of the cytoprotective function of CpG ODN by employing the oxidative stress modulation in immune cells. We used the imaging flow cytometry to demonstrate that tert-butyl hydroperoxide (t-BHP) induces mitochondrial-mediated apoptosis and ROS production in RAW264.7 cells. After pretreatment with CpG ODN, the percentage of apoptotic cells and ROS production was both markedly reduced. The decrease in mitochondrial membrane potential (MMP) induced by t-BHP was partially reversed by CpG ODN. The t-BHP induced upregulation of the expression of apoptosis-related proteins (cleaved-caspase 3, cleaved-caspase 9, cleaved-PARP, and bax) was notably decreased in the presence of CpG ODN. Furthermore, we found that CpG ODN enhanced phosphorylation of ERK1/2 and Akt to inhibit ROS production. In conclusion, the protective effect of CpG ODN in mitigation of t-BHP-induced apoptosis is dependent on the reduction of ROS.Although mulberry fruit has various beneficial effects, its effect on diabetes-related dementia remains unknown. link2 We investigated whether the ethyl acetate fraction of ethanolic extract of mulberry fruit (MFE) could alleviate biochemical and behavioral deficits in alloxan-induced diabetic mice. In the diabetic mice, MFE considerably abolished multiple deficits, e.g., body weight reduction; water and food intake increase; and hyperglycemia, hyperlipidemia, hypoinsulinism, and hypertrophy of the liver, kidneys, spleen, and brain. link3 A 200 mg/kg MFE dose reduced malondialdehyde levels and improved antioxidant enzyme activity in the liver, kidney, and brain tissues. MFE attenuated hyperglycemia-induced memory impairments and acetylcholine deprivation, protected neuronal cells in CA1 and CA3 regions via p-CREB/BDNF pathway activation, and reduced amyloid-β precursor protein and p-Tau expressions in the brain tissue. In conclusion, MFE exerts antidiabetic and neuroprotective effects by upregulating antioxidative activities and p-CREB/BDNF pathway in chronic diabetes.