Bowdenbehrens6371

Z Iurium Wiki

The possibility for an intriguing covalent modification of proteins through a novel pyrrole formation reaction, as well as useful activities against drug resistant cancer cells, make the described polygodial-derived chemical scaffold an interesting new chemotype warranting thorough investigation.Azathioprine (AZA) is frequently used in patients with inflammatory bowel disease (IBD). However, toxic adverse reactions frequently develop and limit the clinical benefits. Currently, the precise mechanisms underlying thiopurine-related toxicity are not well understood. To investigate the relationship between the extent of thiopurine metabolism and adverse reactions in Japanese IBD patients, we prospectively observed 48 IBD patients who received AZA. We analyzed the thiopurine S-methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) gene mutations and measured the concentrations of 6-thioguanine nucleotide (6-TGN) continuously for 52 weeks. All patients possessed wild-type TPMT gene sequences. The ITPA 94C>A mutation was detected in 19 patients (39.6%). Adverse reactions developed in 14 of the 48 patients (29.2%), including leukopenia in 10 patients (20.8%). In the leukopenia group, the percentages of patients with 94C>A were higher than those in the without-leukopenia group (70.0% vs. 31.6%, P A mutation developed leukopenia; however, this mutation may not unequivocally increase the risk of developing leukopenia. In addition, there are factors other than increased 6-TGN levels that are involved in the onset of leukopenia.Endocytosis and postendocytic sorting of epidermal growth factor (EGF) receptor (EGFR) are the major regulators of EGFR signaling. EGFR endocytosis and ubiquitin-dependent lysosomal targeting are also considered to be the prototypic experimental system for studying the molecular mechanisms of stimulus-induced and constitutive endocytic trafficking. Therefore, elucidation of the mechanisms of EGFR endocytosis and its regulation of the signaling network is essential not only for better understanding of the EGFR biology but also for defining general regulatory principles in the endocytosis system. Comprehensive analysis of these mechanisms requires quantitative and physiologically relevant methodological approaches for measuring the rates of EGFR internalization, degradation, and recycling. Basic experimental protocols described in this chapter cover a combination of single-cell microscopy and biochemical methods that are used to follow EGF-induced endocytosis of EGFR in real time, measure the kinetic rate parameters of EGFR internalization and recycling, and analyze EGF-dependent ubiquitination and degradation of EGFR.Recent advances in direct imaging have given us a new appreciation of the spatial and temporal dynamics of membrane trafficking processes, and have allowed us to ask questions that were difficult to address with traditional methods. A relevant example of this is protein sorting in the endosome, which serves as the primary sorting station for proteins internalized from the cell surface. In this chapter, we discuss fluorescence imaging protocols to directly visualize and quantitate the recycling of G protein-coupled receptors (GPCRs)-a highly physiologically relevant family of signaling receptors-in real time in living cells. The protocols allow direct visualization and quantitation of both GPCR exit from the endosome and GPCR delivery to the cell surface. The methods may be extended to study the endolysosomal sorting of many proteins that undergoes endocytic cycling, and may be adapted to other organelles and systems where proteins are sorted.The lysosomal degradation of G protein-coupled receptors (GPCRs) is essential for receptor signaling and down regulation. Once internalized, GPCRs are sorted within the endocytic pathway and packaged into intraluminal vesicles (ILVs) that bud inward to form the multivesicular endosome (MVE). The mechanisms that control GPCR sorting and ILV formation are poorly understood. Quantitative strategies are important for evaluating the function of adaptor and scaffold proteins that regulate sorting of GPCRs at MVEs. In this chapter, we outline two strategies for the quantification and visualization of GPCR sorting into the lumen of MVEs. The first protocol utilizes a biochemical approach to assay the sorting of GPCRs in a population of cells, whereas the second strategy examines GPCR sorting in individual cells using immunofluorescence confocal microscopy. Combined, these assays can be used to establish the kinetics of activated GPCR lysosomal trafficking in response to specific ligands, as well as evaluate the contribution of endosomal adaptors to GPCR sorting at MVEs. The protocols presented in this chapter can be adapted to analyze GPCR sorting in a myriad of cell types and tissues, and expanded to analyze the mechanisms that regulate MVE sorting of other cargoes.Endocytic recycling represents a major mechanism for continuous supply of molecules to the plasma membrane. Particularly, outbound trafficking of the recycling endosome (RE) or RE-derived vesicles can be upregulated by cellular signaling, through mobilization of specialized protein complexes acting as transport machineries. Therefore, biochemical and functional characterization of cell signaling molecules that operate multimeric protein complexes in membrane transport provides important insights to signaling-regulated trafficking events. In this chapter, we described biochemical approaches and reporter assays in differentiated adipocytes to determine the activity and function of the small GTPase RalA, which relays upstream insulin signaling to the exocyst complex that targets intracellular vesicles bearing the Glut4 transporter to the plasma membrane. The experimental design outlined in this chapter can be applied to other regulated transport events facilitated by the exocyst complex, as well as other GTPases that operate distinct transport complexes in specific physiological settings.Epithelial cells polarize their plasma membrane into apical and basolateral domains where the apical membrane faces the luminal side of an organ and the basolateral membrane is in contact with neighboring cells and the basement membrane. To maintain this polarity, newly synthesized and internalized cargos must be sorted to their correct target domain. Over the last ten years, recycling endosomes have emerged as an important sorting station at which proteins destined for the apical membrane are segregated from those destined for the basolateral membrane. Essential for basolateral sorting from recycling endosomes is the tissue-specific adaptor complex AP-1B. This chapter describes experimental protocols to analyze the AP-1B function in epithelial cells including the analysis of protein sorting in LLC-PK1 cells lines, immunoprecipitation of cargo proteins after chemical crosslinking to AP-1B, and radioactive pulse-chase experiments in MDCK cells depleted of the AP-1B subunit μ1B.Epithelial cells display segregated early endosomal compartments, termed apical sorting endosomes and basolateral sorting endosomes, that converge into a common late endosomal-lysosomal degradative compartment and common recycling endosomes (CREs). Unlike recycling endosomes of nonpolarized cells, CREs have the ability to sort apical and basolateral plasma membrane proteins into distinct apical and basolateral recycling routes, utilizing mechanisms similar to those employed by the trans Golgi network in the biosynthetic pathway. The apical recycling route includes an additional compartment, the apical recycling endosomes, consisting of multiple vesicles bundled around the basal body. Recent evidence indicates that, in addition to their role in internalizing ligands and recycling their receptors back to the cell surface, endosomal compartments act as intermediate stations in the biosynthetic routes to the plasma membrane. Here we review methods employed by our laboratory to study the endosomal compartments of epithelial cells and their multiple trafficking roles.Recycling of proteins such as channels, pumps, and receptors is critical for epithelial cell function. In this chapter we present a method to measure receptor recycling in polarized Madin-Darby canine kidney cells using an iodinated ligand. We describe a technique to iodinate transferrin (Tf), we discuss how (125)I-Tf can be used to label a cohort of endocytosed Tf receptor, and then we provide methods to measure the rate of recycling of the (125)I-Tf-receptor complex. We also show how this approach, which is easily adaptable to other proteins, can be used to simultaneously measure the normally small amount of (125)I-Tf transcytosis and degradation.The endocytic pathway is composed of distinct types of endosomes that vary in shape, function, and molecular composition. In addition, endosomes are highly dynamic structures that continuously receive, sort, and deliver molecules to other organelles. Among organizing machineries that contribute to endosomal functions, Rab GTPases and kinesin motors play critical roles. Rab proteins define the identity of endosomal subdomains by recruiting set of effectors among which kinesins shape and transport membranous carriers along the microtubule network. In this review, we provide detailed protocols from live cell imaging to electron microscopy and biochemical approaches to address how Rab and kinesin proteins cooperate molecularly and functionally within the endocytic pathway.Sorting of cargoes in endosomes occurs through their concentration into sorting platforms, called microdomains, from which transport intermediates are formed. The WASH complex localizes to such endosomal microdomains and triggers localized branched actin nucleation by activating the Arp2/3 complex. These branched actin networks are required for both the lateral compartmentalization of endosome membranes into distinct microdomains and for the fission of transport intermediates from these sorting platforms. In this chapter, we provide experimental protocols to study these two aspects of WASH physiology. We first describe how to image the dynamic membrane tubules resulting from the defects of WASH-mediated fission. We then describe how to study quantitatively the microdomain localization of WASH in live and fixed cells. Since microdomains are below the resolution limit of conventional light-microscopy techniques, this required the development of specific image analysis pipelines, which are detailed. The guidelines presented in this chapter can apply to other endomembrane microdomains beyond WASH in order to increase our understanding of trafficking in molecular and quantitative terms.Cell surface receptors that have been internalized and enter the endocytic pathway have multiple fates including entrance into the multivesicular body pathway on their way to lysosomal degradation, recycling back to the cell surface, or retrograde trafficking out of the endolysosomal system back to the Golgi apparatus. Two ubiquitously expressed protein complexes, WASH and the endosomal coat complex retromer, function together to play a central role in directing the fate of receptors into the latter two pathways. In this chapter, we describe fluorescent- and flow cytometry-based methods for analyzing the recycling and retrograde trafficking of two receptors, α5β1 and CI-M6PR, whose intracellular fates are regulated by WASH and retromer activity. PD123319 The guidelines presented in this chapter can be applied to the analysis of any cell surface or intracellular membrane protein to determine the impact of WASH or retromer deregulation on its intracellular trafficking route.

Autoři článku: Bowdenbehrens6371 (Dam Deleuran)