Bossensampson2623
Psychophysiological interaction (PPI) was proposed 20 years ago for study of task modulated connectivity on functional MRI (fMRI) data. A few modifications have since been made, but there remain misunderstandings on the method, as well as on its relations to a similar method named beta series correlation (BSC). Here, we explain what PPI measures and its relations to BSC. We first clarify that the interpretation of a regressor in a general linear model depends on not only itself but also on how other effects are modeled. In terms of PPI, it always reflects differences in connectivity between conditions, when the physiological variable is included as a covariate. Secondly, when there are multiple conditions, we explain how PPI models calculated from direct contrast between conditions could generate identical results as contrasting separate PPIs of each condition (a.k.a. "generalized" PPI). Thirdly, we explicit the deconvolution process that is used for PPI calculation, and how is it related to the trial-by-trial modeling for BSC, and illustrate the relations between PPI and those based upon BSC. In particular, when context sensitive changes in effective connectivity are present, they manifest as changes in correlations of observed trial-by-trial activations or functional connectivity. Therefore, BSC and PPI can detect similar connectivity differences. Lastly, we report empirical analyses using PPI and BSC on fMRI data of an event-related stop signal task to illustrate our points.
Higher-order language disturbances could be the result of white matter tract abnormalities. The study explores the relationship between white matter and pragmatic skills in first-episode schizophrenia.
Thirty-four first-episode patients with schizophrenia and 32 healthy subjects participated in a pragmatic language and Diffusion Tensor Imaging study, where fractional anisotropy of the arcuate fasciculus, corpus callosum and cingulum was correlated with the Polish version of the Right Hemisphere Language Battery.
The patients showed reduced fractional anisotropy in the right arcuate fasciculus, left anterior cingulum bundle and left forceps minor. Among the first episode patients, reduced understanding of written metaphors correlated with reduced fractional anisotropy of left forceps minor, and greater explanation of written and picture metaphors correlated with reduced fractional anisotropy of the left anterior cingulum.
The white matter dysfunctions may underlie the pragmatic language impairment in schizophrenia. Our results shed further light on the functional neuroanatomical basis of pragmatic language use by patients with schizophrenia.
The white matter dysfunctions may underlie the pragmatic language impairment in schizophrenia. Our results shed further light on the functional neuroanatomical basis of pragmatic language use by patients with schizophrenia.Maltreatment experiences alter brain development associated with emotion processing, and dysregulation of emotion may trigger mental health problems in maltreated people. However, studies revealing alterations in brain networks during cognitive reappraisal in victims of maltreatment are strikingly insufficient. In this study, 27 healthy subjects were recruited. The maltreatment experiences and positive reappraisal abilities were measured using the Childhood Trauma Questionnaire-Short Form (CTQ-SF) and Cognitive Emotion Regulation Questionnaire (CERQ), respectively. A cognitive reappraisal task using the International Affective Picture System (IAPS) was designed for functional magnetic resonance imaging (fMRI) experiments. Cognitive reappraisal induced more activities in the bilateral inferior parietal lobes and bilateral middle temporal gyri compared to the condition of "look" (false discovery rate (FDR) corrected p less then 0.05). Furthermore, the left inferior parietal lobe and right middle temporal gyrus functionally interacted with components of the default mode network, including the precuneus and the posterior cingulate cortex. In residual analyses after controlling for age and depressive symptoms, the bilateral inferior parietal and middle temporal activities exhibited positive correlations with cognitive reappraisal abilities (all ps less then 0.05), and emotional maltreatment experiences were negatively correlated with the left inferior parietal cortex, bilateral middle temporal cortex activities, and left inferior parietal lobe-posterior cingulate cortex connectivity (all ps less then 0.05). We found that semantic networks were significant to cognitive reappraisal, especially reinterpretation, and negative effects of emotional maltreatment experiences on semantic network activities.Previous studies have investigated the cognitive and neural mechanisms underlying insight problem solving (INPS). Selleckchem ZD1839 However, it is still unclear which mechanisms are common to both INPS and ordinary problem solving (ORPS), and which are distinctly involved in only one of these processes. In this study, we selected two types of Chinese character chunk decompositions, ordinary Chinese character chunk decomposition (OCD) and creative Chinese character chunk decomposition (CCD), as representatives of ORPS and INPS, respectively. By using functional magnetic resonance imaging (fMRI) to record brain activations when subjects executed OCD or CCD operations, we found that both ORPS and INPS resulted in significant activations in the widespread frontoparietal cognitive control network, including the middle frontal gyrus, inferior frontal gyrus, and inferior parietal lobe. Furthermore, compared with ORPS, INPS led to greater activations in higher-level brain regions related to symbolic processing in the default mode network, including the anterior cingulate cortex, superior temporal gyrus, angular gyrus, and precuneus. Conversely, ORPS induced greater activations than INPS in more posterior brain regions related to visuospatial attention and visual perception, such as the inferior temporal gyrus, hippocampus, and middle occipital gyrus/superior parietal gyrus/fusiform gyrus. In addition, an ROI analysis corroborated the neural commonalities and differences between ORPS and INPS. These findings provide new evidence that ORPS and INPS rely on common as well as distinct cognitive processes and cortical mechanisms.Post-traumatic stress disorder (PTSD) manifests as emotional suffering and problem-solving impairments under extreme stress. This meta-analysis aimed to pool the findings from all the studies examining emotion and cognition in individuals with PTSD to develop a robust mechanistic understanding of the related brain dysfunction. We identified primary studies through a comprehensive literature search of the MEDLINE and PsychINFO databases. The GingerALE software (version 2.3.6) from the BrainMap Project was used to conduct activation likelihood estimation meta-analyses of the eligible studies for cognition, emotion and interface of both. Relative to the non-clinical (NC) group, the PTSD group showed greater activation during emotional tasks in the amygdala and parahippocampal gyrus. In contrast, the NC group showed significantly greater activation in the bilateral anterior cingulate cortex (ACC) than did the PTSD group in the emotional tasks. When both emotional and cognitive processing were evaluated, the PTSD group showed significantly greater activation in the striatum than did the NC group. link2 No differences in activation between the PTSD and NC groups were noted when only the cognitive systems were examined. Individuals with PTSD exhibited overactivity in the subcortical regions, i.e., amygdala and striatum, when processing emotions. Underactivity in the emotional and cognitive processing intermediary cortex, i.e., the ACC, was especially prominent in individuals with PTSD relative to the NC population following exposure to emotional stimuli. These findings may explain the trauma-related fear, irritability, and negative effects as well as the concentration difficulties during cognitive distress associated with emotional arousal, that are commonly observed in individuals with PTSD.Previous research has shown that acute sleep deprivation can influence the reward networks. However, it is unclear whether and how the intrinsic reward network is altered in chronic insomnia disorder (CID). In the present study, we aimed to investigate whether the reward network is altered in patients with CID using resting-state functional magnetic resonance imaging (fMRI) data. Forty-two patients with CID and 33 healthy controls (HCs) were enrolled and underwent resting-state fMRI. Nucleus accumbens (NAc) - based functional connectivity (NAFC) was evaluated to explore the differences in the reward network between the CID and HC groups. Pearson correlation analysis was used to evaluate the clinical significance of altered NAFC networks. Compared to those in the HC group, increased NAFC was found in the salience and limbic networks, while decreased NAFC was found in the default mode network (DMN) and within the reward circuit in patients with CID. In addition, decreased FC between the NAc and DMN was associated with insomnia severity, while NAFC within the reward network was associated with depression symptoms in patients with CID. These findings showed that the reward network is dysfunctional and associated with depression symptom in patients with CID. Future studies of CID should consider both insomnia and depression symptoms to disentangle the role of insomnia and depression in the relationship under study.
Abnormal neural activities during emotional processing have been found in both adults and youths with major depressive disorder. However, findings were inconsistent in each group and cannot be compared to each other.
We first identified neuroimaging experiments that revealed abnormal neural activities during emotional processing in patients with major depressive disorder published from January 1997 to January 2019. Then we conducted voxel-wise meta-analyses on adult and youth patients separately and compared the two age groups using direct meta-comparison.
Fifty-four studies comprising 1141 patients and 1242 healthy controls were identified. Both adult and youth patients showed abnormal neural activities in anterior cingulate cortex, insula, superior and middle temporal gyrus, and occipital cortex compared to healthy controls. However, hyperactivities in the superior and middle frontal gyrus, amygdala, and hippocampus were only observed in adult patients, while hyperactivity in the striatum was only fouht be more subject to the impaired appraisal and reactivity processes, while youth patients were more subject to the impaired perception process. These findings help us understand the progressive pathophysiology of major depressive disorder.Social cognition plays a crucial role in the development and treatment of cocaine dependence. link3 However, studies investigating social cognition, such as empathy and its underlying neural basis, are lacking. To explore the neural interactions among reward and memory circuits, we applied effective connectivity analysis on resting-state fMRI data collected from cocaine-dependent subjects. The relationship between effective connectivity within these two important circuits and empathy ability - evaluated with the Interpersonal Reactivity Index (IRI) - was assessed by machine learning algorithm using multivariate regression analysis. In accordance with the neurocircuitry disruptions of cocaine addiction, the results showed that cocaine-dependent subjects relative to healthy controls had altered resting state effective connectivity between parts of the memory and reward systems. Furthermore, effective connectivity between the memory and reward system could predict the fantasy empathy (FE) subscale scores in cocaine dependence.