Boruppena9662
This study evaluated the removal efficiencies of sulfamethoxazole (SMX), tetracycline (TC) and their common co-existing contaminants, i.e., chemical oxygen demand (COD) and nitrogen in constructed wetlands integrated with microbial fuel cells (MFC-CWs), as affected by plant, circuit operation mode and influent antibiotic loads. The results demonstrated that MFC-CWs with plant and circuit connection exhibited the best performance in SMX and TC removal. The removal percentages for SMX and TC were 99.70-100% and 99.66-99.85% at HRT of 1 d, respectively, in MFC-CWs with plant and circuit connection when the influent SMX and TC concentrations were 5-100 μg L-1 and 5-50 μg L-1. The removal efficiencies of both SMX and TC were mainly enhanced by the circuit connection, compared to the plants. The presence of plant and circuit connection also accelerated the accumulation of SMX and TC in electrode layers, and the residues of both antibiotics in the anode layer were higher than in the cathode layer. Besides, closed-circuit MFC-CWs showed better COD removal performance than open-circuit MFC-CWs, irrespective of the increasing influent COD and antibiotic concentrations. The NH4+-N removal in MFC-CWs was mainly promoted by the presence of plants and decreased with increasing influent antibiotic concentrations. Additionally, the bioelectricity generation of planted MFC-CWs was better than in unplanted systems. The coulombic efficiencies in both planted and unplanted MFC-CWs decreased with increasing influent antibiotic concentrations. In summary, MFC-CWs with plant and circuit connection have potential for the treatment of wastewater containing SMX and TC. A piscicide, rotenone (RT), is frequently used for clear and management of aquatic systems such as fish pond, and even for illegal fishing throughout the world. The effects of RT on submerged macrophytes remain elusive although the effects of RT on many kinds of animals are well documented. We wanted to determine the effects of RT on the growth and metabolism of three submerged plants (Vallisneria natans, Myriophyllum spicatum, Potamogeton maackianus) and try to find the reasons of these effects. The results showed that the shoot height, shoot dry weight, root dry weight, rootshoot ratios, contents of soluble protein and soluble carbohydrate of the three tested submerged plants were significantly negatively affected by RT and the effects were different among the studied species. Furthermore, pH rised a little and light transmission was greatly reduced in the water with RT treatment. We think that the negative effects of RT on the growth and metabolism of submerged species is partially attributing to the lower light caused by RT application. Accordingly, we highlight that submerged species may be greatly suppressed by RT, and we should apply RT in water ecosystems with great caution. This work presents a continuous set-up for SCWO, which was operated at mild conditions (380 °C, 25 MPa, oxidant equivalence ratio of 2.0 and residence time of 26 s) to oxidize cellulose, lignin, and acetic acid as model compounds. The aim was to oxidize different organics consecutively to near completion in the same mild reaction conditions and set-up. These conditions can overcome some drawbacks associated to SCWO. To combine near complete oxidation with the applied mild process conditions, aqueous effluent from SCWO, containing intermediates from incomplete oxidation, was recycled for consecutive oxidation. Meanwhile, fresh feedstock was continuously fed to retain the process capacity. Upon recycling the aqueous effluent three to four times, depending on the feedstock, the oxidation efficiency increased from 63.9%, 45.3% and 28.3% in a single pass for cellulose, lignin, and acetic acid, respectively, to near 100%. The principle of effluent recirculation should allow a compact set-up to perform almost complete oxidation of different organics at mild conditions. The principles and effects of effluent recirculation are outlined, as well as practical consequences and perspectives of this novel principle to SCWO. To enhance the degradation of wheat straw (WS) and corn straw (CS) in rumen fermentation, characterization of degradation and ruminal microorganisms of monosubstrate (WS/CS) groups and a cosubstrate strategy with food waste (FW) group was performed. The cellulose, hemicellulose, and lignin degradation efficiency of WS and CS; soluble chemical oxygen demand; volatile fatty acid yields; and activity of ligninolytic, cellulolytic, and hemicellulolytic enzymes for the cosubstrate group were improved compared with those for the corresponding monosubstrate groups. An accurate and a good of fit of the Weibull kinetic model, decreased crystallinity index values, and characteristic absorbance bands in the Fourier transform-infrared spectra further confirmed that cosubstrate addition with FW decreased the resistance of cellulose and hemicellulose to biodegradation. High-throughput sequencing results suggested that the bacterial diversity in CS rumen fermentation and fungal diversity and richness in WS rumen fermentation were promoted with FW as a cosubstrate. The cosubstrate addition with FW significantly affected the composition of the ruminal bacteria and fungi in rumen fermentation. The relative abundances (RAs) of rumen bacteria were increased in the cosubstrate CS/WS and FW fermentation conditions, and the enhancement of CS degradation with FW supplementation was stronger than that of WS rumen fermentation with FW supplementation. The RAs of the ruminal fungal genera Ustilago and Fusarium were promoted in CS and WS fermentation with FW, respectively. Moreover, the fermentation properties and rumen flora in the FW rumen fermentation also provided some evidence to suggest an enhancement of the cosubstrate strategy compared with the monosubstrate strategy. Musk compounds are often used as to treat heart-related diseases and are widely used in Asia. Muscone is one of the most important physiologically active compounds of natural musk. selleck compound Muscone is a chiral compound and can be further classified into S-muscone and R-muscone and both are present in synthetic musk. While these two chiral isomers have significant differences in odor properties, their difference in toxicity is still unknown. This study used zebrafish as an animal model to compare cardiac toxicities of S-muscone and R-muscone. Results showed that both compounds were acutely toxic to zebrafish embryos causing mortality, decreased hatching rate, pericardial edema, and decreased heart beat rate. These toxicities were modulated through increased Myh6 and Myh7 mRNA expression, and decreased thyroid genes (Trh, Thrβ, and Dio3) expression. R-muscone caused higher toxicity than S-muscone at the same concentration. For safety, the chiral isomer composition of synthetic muscone should be carefully regulated in the future.