Borregaardmcqueen5238

Z Iurium Wiki

Theoretical predictions of light beam interactions with jet engine exhaust are of importance for optimization of various optical systems, including LIDARs, imagers and communication links operating in the vicinity of aircrafts and marine vessels. Here we extend the analysis previously carried out for coherent laser beams propagating in jet engine exhaust, to the broad class of Gaussian Schell-Model (GSM) beams, being capable of treating any degree of coherence in addition to size and radius of curvature. The analytical formulas for the spectral density (SD) and the spectral degree of coherence (DOC) of the GSM beam are obtained and analyzed on passage through a typical jet engine exhaust region. It is shown that for sources with high coherence, the transverse profiles of the SD and the DOC of the GSM beams gradually transition from initially circular to elliptical shape upon propagation at very short ranges. However, such transition is suppressed for sources with lower coherence and disappears in the incoherent source limit, implying that the GSM source with low source coherence is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence. The physical interpretation and the illustration are included.Conventional stereoscopic displays are subject to the well-known vergence-accommodation conflict (VAC) problem due to their lack of the ability to render correct focus cues of a 3D scene. A computational multilayer light field display has been explored as one of the approaches that can potentially overcome the VAC problem owing to the promise of rendering a true 3D scene by sampling the directions of the light rays apparently emitted by the 3D scene. Several pioneering works have demonstrated working prototypes of multilayer light field displays and the potential capability of rendering nearly correct focus cues. However, there is no systematic investigation upon methods for modeling and analyzing such a display, which is essential for further optimization and development of high-performance multilayer light field display systems. In this paper, we proposed a systemic analysis method for the multilayer light field displays by simulating the perceived retinal image which takes the display factors, the view-dependency of the reference light field, the diffraction effect, and the visual factors into consideration. Then we applied this model to investigate the accommodative response when observing the display engine.By rotating the four-section π-shifted phase plate in the transverse plane relatively to the axes of the elliptical beam of 800-nm, 1.1-mJ, 35-fs pulse propagating in air, we switch between the regime of four parallel plasma channels and the regime of spatial symmetry breakup followed by on-axis plasma channel formation identified on the burnt paper images of the beam. Relaxation of the π-phase shift for 45° phase plate rotation is demonstrated explicitly in 3D+time carrier wave resolved numerical simulations yielding the initial step-like phase distribution degradation along the plasma region. This degradation becomes negligible as the angle between the ellipse major axis and the π-phase break line decreases to 15°.Replacing mechanical optical beam steering devices with non-mechanical electro-optic devices has been a long-standing desire for applications such as space-based communication, LiDAR and autonomous vehicles. While promising progress has been achieved to non-mechanically deflect light with high efficiency over a wide angular range, significant limitations remain towards achieving large aperture beam steering with a tunable steering direction. In this paper, we propose a unique liquid crystal based Pancharatnam Phase Device for beam steering which can provide both tunability and a fast response times in a format scalable to large apertures. This architecture employs a linear array of phase control elements to locally control the orientation of the liquid crystal director into a cycloidal pattern to deflect transmitted light. The PCEs are comprised of a fringe field switching electrode structure that can provide a variable in-plane electric field. Detailed modeling of the proposed design is presented which demonstrates that such a device can achieve a high degree of uniformity as it rotates the LC molecules over the 180 ° angular range required to create a Pancharatnam phase device.A conventional hollow core fiber (HCF) scheme is implemented to investigate spectral broadening of TitaniumSapphire (Ti-Sa) femtosecond laser pulses in saturated hydrocarbon molecules compared to unsaturated ones. While the saturated molecules exhibit a spectral broadening similar to noble gases, for the unsaturated ones with π bonds, broadening towards blue is restrained. Numerical simulations underpin that it is a combination of group velocity dispersion (GVD) and Raman scattering which limits the spectral broadening for the unsaturated molecules. Compression of low energy ∼40fs pulses to ∼8fs using saturated hydrocarbons is demonstrated, suggesting the feasibility of this media for high repetition rate laser pulse compression.A label-free biosensor based on a reflective microfiber probe for in-situ real-time DNA hybridization detection is proposed and experimentally demonstrated. The microfiber probe is simply fabricated by snapping a non-adiabatic biconical microfiber through closing the oxyhydrogen flame during fiber stretching. Assisted with the Fresnel reflection at the end of microfiber, a reflective microfiber modal interferometer is realized. The in-situ DNA hybridization relies on the surface functionalization of a monolayer of Poly-L-lysine (PLL) and synthetic DNA sequences that bind to a given target with high specificity. The detection processes of DNA hybridization in various concentration of target DNA solutions are monitored in real-time and the experimental results present a minimum detectable concentration of 10pM with good repeatability. Additionally, the detection specificity is also investigated by immersing the microfiber probe into the non-complementary ssDNA solutions and observing the spectral variation. The proposed biosensor has advantages of high sensitivity, compact size, ease of use and simple fabrication, which makes it has great potential to be applied in a lot of fields such as disease diagnosis, medicine, and environmental science.Nonlinear optical signal processing is expected to be one of promising approaches in optical networking units (ONUs) and it requires mutual conversion between data signals and optical pulse signals for the bandwidth matching between them. We investigate four-wave mixing (FWM) based bandwidth management for ONUs and experimentally demonstrate variable bandwidth adjustment and defragmentation. Experimental results show variability in bandwidth adjustment and spectral defragmentation. Bit-error-rate (BER) measurements show an error-free operation (BER less then 10-9) with a power penalty of 3.75 dB after FWM-based bandwidth management in simulation.A miniature fiber-optic tip Fabry-Perot (FP) pressure sensor with excellent high-temperature survivability, assembled by hydroxide catalysis bonding (HCB) technology, is proposed and experimentally demonstrated. A standard single-mode fiber is fusion spliced to a fused silica hollow tube with an outer diameter (OD) of 125 µm, and a 1-µm-thick circular silicon diaphragm with a diameter slightly larger than the OD is bonded to the other endface of the hollow tube by HCB technology. The ultrathin silicon diaphragm is prepared on a silicon-on-insulator (SOI) wafer produced by microelectromechanical systems (MEMS), providing the capability of large-scale mass production. The HCB technology enables a polymer-free bonding between diaphragm and hollow tube on fiber tip with the obvious advantages of high alignment precision, normal pressure and temperature (NPT) operation, and reliable effectiveness. The static pressure and temperature response of the proposed sensor are discussed. Results show that the sensor has a measurable pressure range of 0∼100 kPa, which is well consistent with the measurement range of biological blood pressure. The pressure sensitivity is up to 2.13 nm/kPa with a resolution of 0.32% (0.32kPa). Besides, the sensor possesses a unique high-temperature resistant capability up to 600 °C, which can easily survive even in high-temperature sterilization processes, and it has a low temperature dependence of 0.09 kPa/°C due to the induced HCB bonding technology and the silicon-based diaphragm. Thus, the proposed fiber tip pressure sensor is desirable for invasive biomedical pressure diagnostics and pressure monitoring in related harsh environments.The integral representation of the Zernike radial functions is well approximated by applying the Riemann sums with a surprisingly rapid convergence. The errors of the Riemann sums are found to averagely be not exceed 3 ×10-14, 3.3×10-14, and 1.8×10-13 for the radial order up to 30, 50, and 100, respectively. Moreover, a parallel algorithm based on the Riemann sums is proposed to directly generate a set of radial functions. With the aid of the graphics processing units (GPUs), the algorithm shows an acceleration ratio up to 200-fold over the traditional CPU computation. The fast generation for a set of Zernike radial polynomials is expected to be valuable in further applications, such as the aberration analysis and the pattern recognition.Propagation of a continuous spectrum of orbital angular momentum (OAM) states through a realistic and controlled 3-dimensional turbulent condition has not been studied to date to the authors' knowledge. Using the Higher Order Bessel-gauss Beams Integrated in Time (HOBBIT) system and a 60 meter optical path Variable Turbulence Generator (VTG), we demonstrate that by changing the OAM in a continuous scan, a spectrum of OAMs provide an opportunity to take advantage of additional propagation channels within the aperture of the transmitter and optical path to the receiver. Experimental results are provided illustrating the HOBBIT system's ability to position the beam in space and time to exploit eigenchannels in the turbulent medium. This technique can be used to probe the turbulence at time scales much faster than the Greenwood frequency.We experimentally report the dynamics of multi-soliton patterns noise-like pulses (NLPs) in a passively mode-locked fiber laser, which the pulse duration can be linearly tuned from 8.21 ns to 128.23 ns by 2.936 ns / 10 mW. buy AZD2811 Benefiting from the drastically strengthened nonlinear effects in the cavity and the high gain amplification in the unidirectional ring (UR), the transformation from rectangular-shaped NLP to Gaussian-shaped NLP is experimentally achieved. link2 Versatile multi-soliton patterns are observed in NLP regime for the first time, namely, single-scale soliton clusters, high-order harmonic mode-locking, and localized chaotic multiple pulses. In particular, the spectrum evolution with pump power and spectrum stability in 2 hours are also monitored. link3 The obtained results demonstrate the rectangular-shaped NLP can fully transform into Gaussian-shaped NLP, and the multi-soliton patterns can exist in the NLP regime, which contributes to further understanding the nature and mechanism of the NLP in a passively mode-locked fiber laser.

Autoři článku: Borregaardmcqueen5238 (Borup Potts)