Borgmattingly6154
Larger spiders had a lower supercooling ability in northern populations. The red-listed and rarest D. plantarius was slightly less cold tolerant than the more common D. fimbriatus, and this might be of importance in a context of climate change that could imply colder overwintering habitats in the north due to reduced snow cover protection. The lowest cold resistance might put D. plantarius at risk of extinction in the future, and this should be considered in conservation plan.Invasive species are one of the main causes of biodiversity loss worldwide. As introduced, populations increase in abundance and geographical range, so does the potential for negative impacts on native communities. As such, there is a need to better understand the processes driving range expansion as species become established in recipient landscapes. Through an investigation into capacity for population growth and range expansion of introduced populations of a non-native lizard (Podarcis muralis), we aimed to demonstrate how multi-scale factors influence spatial spread, population growth, and invasion potential in introduced species. We collated location records of P. muralis presence in England, UK through data collected from field surveys and a citizen science campaign. We used these data as input for presence-background models to predict areas of climate suitability at a national-scale (5 km resolution), and fine-scale habitat suitability at the local scale (2 m resolution). We then integrated local model patches in the landscape, allows populations to increase locally with minimal dispersal.Temporal genetic studies of low-dispersing organisms are rare. Marine invertebrates lacking a planktonic larval stage are expected to have lower dispersal, low gene flow, and a higher potential for local adaptation than organisms with planktonic dispersal. Leptasterias is a genus of brooding sea stars containing several cryptic species complexes. Population genetic methods were used to resolve patterns of fine-scale population structure in central California Leptasterias species using three loci from nuclear and mitochondrial genomes. Historic samples (collected between 1897 and 1998) were compared to contemporary samples (collected between 2008 and 2014) to delineate changes in species distributions in space and time. Phylogenetic analysis of contemporary samples confirmed the presence of a bay-localized clade and revealed the presence of an additional bay-localized and previously undescribed clade of Leptasterias. Analysis of contemporary and historic samples indicates two clades are experiencing a constriction in their southern range limit and suggests a decrease in clade-specific abundance at sites at which they were once prevalent. Historic sampling revealed a dramatically different distribution of diversity along the California coastline compared to contemporary sampling and illustrates the importance of temporal genetic sampling in phylogeographic studies. These samples were collected prior to significant impacts of Sea Star Wasting Disease (SSWD) and represent an in-depth analysis of genetic structure over 117 years prior to the SSWD-associated mass die-off of Leptasterias.Cereal domestication during the transition to agriculture resulted in widespread food production, but why only certain species were domesticated remains unknown. We tested whether seedlings of crop progenitors share functional traits that could give them a competitive advantage within anthropogenic environments, including higher germination, greater seedling survival, faster growth rates, and greater competitive ability.Fifteen wild grass species from the Fertile Crescent were grown individually under controlled conditions to evaluate differences in growth between cereal crop progenitors and other wild species that were never domesticated. Differences in germination, seedling survival, and competitive ability were measured by growing a subset of these species as monocultures and mixtures.Crop progenitors had greater germination success, germinated more quickly and had greater aboveground biomass when grown in competition with other species. There was no evidence of a difference in seedling survival, but seed size was positively correlated with a number of traits, including net assimilation rates, greater germination success, and faster germination under competition. In mixtures, the positive effect of seed mass on germination success and speed of germination was even more beneficial for crop progenitors than for other wild species, suggesting greater fitness. Thus, selection for larger seeded individuals under competition may have been stronger in the crop progenitors.The strong competitive ability of Fertile Crescent cereal crop progenitors, linked to their larger seedling size, represents an important ecological difference between these species and other wild grasses in the region. It is consistent with the hypothesis that competition within plant communities surrounding human settlements, or under early cultivation, benefited progenitor species, favoring their success as crops.The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. Oridonin in vitro We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.