Boothroche3362
This study aimed to investigate the effects of the coadministration of budesonide (Bud) and the extracts of Epimedii Folium and Ligustri Lucidi Fructus (EEL) on regulating apoptosis and autophagy in asthmatic rats. Forty Sprague-Dawley rats were divided randomly into five groups (8 rats in each group) normal control (control), asthma model (asthma), Bud (1 mg Bud suspension in 50 ml sterile physiological saline for 30 min), EEL (100 mg/kg EEL), and group of coadministration of Bud and EEL (Bud&EEL, 100 mg/kg EEL plus Bud by nebulized inhalation for 30 min). Rats were sensitized and challenged with ovalbumin for 7 weeks and treated with corresponding drug for 4 weeks. PND-1186 We anesthetized all rats with 25% ethyl carbamate (4 ml/kg) and took lung tissues and BALF after final ovalbumin challenge to observe the lung histopathology and morphometry; apoptosis in BALF and lung tissue; protein expressions of Ki-67, α-SMA, cleaved Caspase-3, p-mTOR, and LC3; and protein and mRNA expressions of Bax, Bcl-2, Caspase-3, P53, mTOR, and Beclin-1. Results showed that Bud&EEL could alleviate airway remodeling, inhibit cell proliferation and autophagy in lung tissue, and promote apoptosis in BALF and lung tissue in ovalbumin-induced asthma rats through downregulating the protein expressions of α-SMA and Ki-67, the protein ratio of LC3-II/LC3-I and Bcl-2/Bax, and the protein and mRNA expressions of Bcl-2 and Beclin-1, while upregulating the protein expressions of cleaved Caspase-3 and p-mTOR, and the protein and mRNA expressions of Bax, Caspase-3, P53, and mTOR. Bud&EEL had better effects than single-use Bud on improving airway remodeling, promoting apoptosis, and regulating the expressions of autophagy- and apoptosis-related proteins. This study suggested that the effects of coadministration of EEL and Bud on regulating apoptosis and autophagy were better than those of single-use Bud treatment, and that might be the mechanism of attenuating airway remodeling, providing an alternative therapy for asthma.The present study aims to investigate the effects and mechanisms of sarsasapogenin resistance to precocious puberty. Female Sprague Dawley rats were divided into a normal (N) group, model (M) group, leuprolide (L) group, and sarsasapogenin (Sar) group. Rats at 5 days of age were given a single subcutaneous injection of 300 micrograms of danazol to establish the precocious puberty model. After 10 days of modeling, drug intervention was started. The development of the uterus and ovary was observed by hematoxylin and eosin (HE) staining. The levels of the serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol (E2) were determined by radioimmunoassay. Also, the expressions of the hypothalamic gonadotropin releasing hormone (GnRH), Kiss-1, G protein-coupled receptor 54 (GPR54), and pituitary gonadotropin releasing hormone receptor (GnRH-R) were detected by RT-PCR. The results showed that compared with the model group, sarsasapogenin could significantly delay the opening time of vaginal, decreased uterine and ovarian coefficients, and reduced uterine wall thickness. Moreover, it can significantly downregulate the levels of serum hormones and reduce the expression of GnRH, GnRH-R, and kiss-1. In summary, our results indicate that sarsasapogenin can regulate the HPG axis through the kiss-1/GPR54 system for therapeutic precocious puberty.
Occupational and environmental exposure to several pollutant factors such as petroleum products containing benzene has toxic effects on different body systems. The hematopoietic system and immune system are among the affected systems. This study aims to investigate the effect of benzene exposure on some blood parameters of workers at several fuel stations in Basra city, as well as to reveal if the continuous exposure may induce an inflammatory response, which is reflected by changes in some hematological and inflammatory markers.
The study included two groups of males. The first group consists of 72 exposed workers at petrol stations in different locations in the Basra city. The other group is the control group, which consists of 75 nonexposed subjects (students and faculty members of the college). Different hematological parameters (WBC, RBC, HGB, MCV, MCHC, and MCH) have been evaluated. Serum concentrations of IL-6 and hs-CRP were estimated in all workers and nonexposed using enzyme-linked immunosorbentarameters refer to damage in the hematopoietic system due to continuous exposure to vapors of petrol products, which also result in a significant increase in interleukin-6.Few studies have investigated household interventions to enhance indoor air quality (IAQ) and health outcomes in relatively low-income communities. This study aims to examine the impact of the combined intervention with asthma education and air purifier on IAQ and health outcomes in the US-Mexico border area. An intervention study conducted in McAllen, Texas, between June and November 2019 included 16 households having children with asthma. The particulate matter (PM2.5) levels were monitored in the bedroom, kitchen, and living room to measure the IAQ for 7 days before and after the intervention, respectively. Multiple surveys were applied to evaluate changes in children's health outcomes. The mean PM2.5 levels in each place were significantly improved. Overall, they significantly decreased by 1.91 μg/m3 on average (p less then 0.05). All surveys showed better health outcomes; particularly, quality of life for children was significantly improved (p less then 0.05). This pilot study suggests that the combined household intervention might improve IAQ in households and health outcomes for children with asthma and reduce health disparities in low-income communities. Future large-scale studies are needed to verify the effectiveness of this household intervention to improve IAQ and asthma management.Renal disease is a major issue for global public health. Despite some progress in supportive care, the mortality rates among patients with this condition remain alarmingly high. Studies in pursuit of innovative strategies to treat renal diseases, especially stimulating kidney regeneration, have been developed. In this field, stem cell-based therapy has been a promising area. Induced pluripotent stem cell-derived renal cells (iPSC-RCs) represent an interesting source of cells for treating kidney diseases. Advances in regenerative medicine using iPSC-RCs and their application to the kidney are discussed in this review. Furthermore, the way differentiation protocols of induced pluripotent stem cells into renal cells may also be applied for the generation of kidney organoids is also described, contributing to studies in renal development, kidney diseases, and drug toxicity tests. The translation of the differentiation methodologies into animal model studies and the safety and feasibility of renal differentiated cells as a treatment for kidney injury are also highlighted.