Bondborup0626
Significant differences were found between the origins of scions (p less then 0.0083, after Bonferroni correction), showing grafts with hybrid tree scions taking hold better. In addition, the probability of survival at 5 months after grafting with hybrid tree scions was greater (p less then 0.0001) than in grafts with scions from trees of the pure species (Logit model), which coincides with the results of the Weibull model, which indicated that the probability of graft death with pure species donor tree scions is greater than for grafts with hybrid scions. There were no significant differences regarding the position of the scion in the donor tree crown. © 2020 Pérez-Luna et al.The heat shock transcription factor (Hsf) family, identified as one of the important gene families, participates in plant development process and some stress response. So far, there have been no reports on the research of the Hsf transcription factors in physic nut. In this study, seventeen putative Hsf genes identified from physic nut genome. Phylogenetic analysis manifested these genes classified into three groups A, B and C. Chromosomal location showed that they distributed eight out of eleven linkage groups. Expression profiling indicated that fourteen JcHsf genes highly expressed in different tissues except JcHsf1, JcHsf6 and JcHsf13. In addition, induction of six and twelve JcHsf genes noted against salt stress and drought stress, respectively, which demonstrated that the JcHsf genes are involved in abiotic stress responses. Our results contribute to a better understanding of the JcHsf gene family and further study of its function. ©2020 Zhang et al.Seabirds in the order of Procellariiformes have one of the highest proportions of threatened species of any avian order. Species undergoing recovery may be predicted to have a genetic signature of a bottleneck, low genetic diversity, or higher rates of inbreeding. The Hawaiian Band-rumped Storm Petrel ('Akē'akē; Hydrobates castro), a long-lived philopatric seabird, suffered massive population declines resulting in its listing under the Endangered Species Act in 2016 as federally Endangered. We used high-throughput sequencing to assess patterns of genetic diversity and potential for inbreeding in remaining populations in the Hawaiian Islands. We compared a total of 24 individuals, including both historical and modern samples, collected from breeding colonies or downed individuals found on the islands of Kaua'i, O'ahu, Maui, and the Big Island of Hawai'i. Genetic analyses revealed little differentiation between breeding colonies on Kaua'i and the Big Island colonies. Although small sample sizes limit inferences regarding other island colonies, downed individuals from O'ahu and Maui did not assign to known breeding colonies, suggesting the existence of an additional distinct breeding population. The maintenance of genetic diversity in future generations is an important consideration for conservation management. This study provides a baseline of population structure for the remaining nesting colonies that could inform potential translocations of the Endangered H. castro. © 2020 Antaky et al.Background Superoxide dismutase (SOD) proteins, as one kind of the antioxidant enzymes, play critical roles in plant response to various environment stresses. Even though its functions in the oxidative stress were very well characterized, the roles of SOD family genes in regulating alkaline stress response are not fully reported. Methods We identified the potential family members by using Hidden Markov model and soybean genome database. The neighbor-joining phylogenetic tree and exon-intron structures were generated by using software MEGA 5.0 and GSDS online server, respectively. Furthermore, the conserved motifs were analyzed by MEME online server. The syntenic analysis was conducted using Circos-0.69. Additionally, the expression levels of soybean SOD genes under alkaline stress were identified by qRT-PCR. Results In this study, we identified 13 potential SOD genes in soybean genome. Phylogenetic analysis suggested that SOD genes could be classified into three subfamilies, including MnSODs (GmMSD1-2), FeSODs (GmFSD1-5) and Cu/ZnSODs (GmCSD1-6). We further investigated the gene structure, chromosomal locations and gene-duplication, conserved domains and promoter cis-elements of the soybean SOD genes. We also explored the expression profiles of soybean SOD genes in different tissues and alkaline, salt and cold stresses, based on the transcriptome data. In addition, we detected their expression patterns in roots and leaves by qRT-PCR under alkaline stress, and found that different SOD subfamily genes may play different roles in response to alkaline stress. These results also confirmed the hypothesis that the great evolutionary divergence may contribute to the potential functional diversity in soybean SOD genes. Taken together, we established a foundation for further functional characterization of soybean SOD genes in response to alkaline stress in the future. STZ inhibitor ic50 © 2020 Lu et al.The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689-150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796-82,919 bp), a small single copy region (SSC, 17,084-17,092 bp), and a pair of inverted repeat regions (IRs, 25,401-25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%-38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species. ©2020 Huang et al.