Bojewatkins8995

Z Iurium Wiki

Variation in browsing among habitats was best predicted by the composition and structural complexity of benthic assemblages (in particular the cover and composition of corals, but not macroalgal cover), and was poorly reflected by visual estimates of browser biomass. Surprisingly, the lowest browsing rates were recorded in the most structurally complex habitat, with the greatest cover of coral (branching Porites habitat). While the mechanism for the variation in browsing is not clear, it may be related to scale-dependent effects of habitat structure on visual occlusion inhibiting foraging activity by browsing fishes, or the relative availability of alternate dietary resources. Our results suggest that maintained functionality may vary among distinct and emerging coral reef configurations due to ecological interactions between reef fishes and their environment determining habitat selection.To land, flying animals must simultaneously reduce speed and control their path to the target. While the control of approach speed has been studied in many different animals, little is known about the effect of target size on landing, particularly for small targets that require precise trajectory control. To begin to explore this, we recorded the stingless bees Scaptotrigona depilis landing on their natural hive entrance-a narrow wax tube built by the bees themselves. Rather than decelerating before touchdown as most animals do, S. depilis accelerates in preparation for its high precision landings on the narrow tube of wax. A simulation of traffic at the hive suggests that this counterintuitive landing strategy could confer a collective advantage to the colony by minimizing the risk of mid-air collisions and thus of traffic congestion. If the simulated size of the hive entrance increases and if traffic intensity decreases relative to the measured real-world values, 'accelerated landing' ceases to provide a clear benefit, suggesting that it is only a useful strategy when target cross-section is small and landing traffic is high. We discuss this strategy in the context of S. depilis' ecology and propose that it is an adaptive behaviour that benefits foraging and nest defence.Tinamous host the highest generic diversity of lice of any group of birds, as well as hosting representatives of all four avian feather louse ecomorphs. Although the generic diversity of tinamou feather lice is well documented, few attempts have been made to reconstruct the phylogenetic relationships among these lice. To test whether tinamou feather lice form a monophyletic group as a whole, we used whole-genome sequencing to estimate a higher-level phylogeny of tinamou feather lice, together with a broad diversity of other avian feather louse groups. In total, we analysed sequences from over 1000 genes for 48 genera of avian lice using both concatenated and coalescent approaches to estimate the phylogeny of this diverse group of avian feather lice. Although the body louse ecomorph of tinamou feather lice formed a monophyletic group, they did not strictly form a monophyletic group together with the other three ecomorphs of tinamou feather lice. In particular, a clade comprised of several feather louse genera, mainly from South America, is nested phylogenetically within tinamou lice, which also have their main centre of diversity in South America. These results suggest in situ radiation of these parasites in South America.Neurobiological changes affecting new mothers are known to support the development of the mother-infant relationship (the 'maternal brain'). However, which aspects of parenting are actually mother-specific and which rely on general cognitive abilities remains debated. For example, refuting earlier findings, a recent study demonstrated that fathers identify their own baby from their cries just as well as mothers. Here we show that this performance is independent not only of sex, but also of parenthood status. We found that mothers' ability to recognize their newborn from their cries increased rapidly within few days postpartum, with highly multiparous mothers performing better. However, both male and female non-parents could similarly recognize an assigned baby, even after a very short exposure. As in mothers, both the initial amount of experimental exposure to the baby's cries (learning opportunity) and prior experience of caring for infants (auditory expertise) affected participants' performance. We thus suggest that, rather than being female-specific or motherhood-dependent, the ability to recognize a baby from their cries derives from general auditory and learning skills. By being available to non-parents of both sexes, it may contribute to the caregiving flexibility required for efficient cooperative breeding in humans.The ratio of males to females among an individual's offspring at birth (offspring sex ratio) has long been of great interest to evolutionary biologists. The human offspring sex ratio is around 1 1 and is understood primarily in terms of Fisher's principle (R. see more A. Fisher, The genetical theory of natural selection, 1930), which is based on the insight that in a population with an unequal sex ratio, each individual of the rarer sex will on average have greater reproductive value than each individual of the more common sex. Accordingly, individuals genetically predisposed to produce the rarer sex will tend to have greater fitness and thus genes predisposing to bearing that sex will increase in frequency until the population sex ratio approaches 1 1. An assumption of this perspective is that individuals' offspring sex ratio is heritable. However, the heritability in humans remains remarkably uncertain, with inconsistent findings and important power limitations of existing studies. To address this persistent uncertainty, we used data from the entire Swedish-born population born 1932 or later, including 3 543 243 individuals and their 4 753 269 children. To investigate whether offspring sex ratio is influenced by genetic variation, we tested the association between individuals' offspring's sex and their siblings' offspring's sex (n pairs = 14 015 421). We estimated that the heritability for offspring sex ratio was zero, with an upper 95% confidence interval of 0.002, rendering Fisher's principle and several other existing hypotheses untenable as frameworks for understanding human offspring sex ratio.

Autoři článku: Bojewatkins8995 (Dahlgaard Sejersen)