Blandhester6688
Aging affects the brain function in elderly individuals, and Dushen Tang (DST) is widely used for the treatment of senile diseases. In this study, the protective effect of DST against memory impairment was evaluated through the Morris water maze (MWM) test and transmission electron microscopy (TEM). A joint analysis was also performed using LC-MS metabolomics and the microbiome. The MWM test showed that DST could significantly improve the spatial memory and learning abilities of rats with memory impairment, and the TEM analysis showed that DST could reduce neuronal damage in the hippocampus of rats with memory impairment. Ten potential biomarkers involving pyruvate metabolism, the synthesis and degradation of ketone bodies, and other metabolic pathways were identified by the metabolomic analysis, and it was found that 3-hydroxybutyric acid and lactic acid were involved in the activation of cAMP signaling pathways. The 16S rDNA sequencing results showed that DST could regulate the structure of the gut microbiota in rats with memory impairment, and these effects were manifested as changes in energy metabolism. These findings suggest that DST exerts a good therapeutic effect on rats with memory impairment and that this effect might be mainly achieved by improving energy metabolism. These findings might lead to the potential development of DST as a drug for the treatment of rats with memory impairment.
To evaluate the efficacy and safety of an endoscopic bag during laparoscopic morcellation of leiomyoma or myomatous uterus.
A total of 48 patients with symptomatic leiomyoma were randomized for laparoscopic morcellation in two groups group A with a specific endoscopic bag or group B without any bag. The primary outcome measure was the detection of smooth muscle cells from washing after power morcellation determined by peritoneal cytology and immunohistochemistry (IHC).
Cytology and IHC from group A did not revealed any smooth muscle cells, while 29% of cases (7/24) from group B were positive (
= .009). The duration of the surgical procedure was the same in both groups. The duration of positioning the bag did not change significantly during the study. Only in one case the use of the bag was difficult due to a low pneumoperitoneum.
The use of a morcellation bag is efficient to prevent the spread of smooth muscle cells during the morcellation of leiomyoma or myomatous uterus. This study confirms the feasibility and the safety of the laparoscopic inbag morcellation versus open morcellation.
The use of a morcellation bag is efficient to prevent the spread of smooth muscle cells during the morcellation of leiomyoma or myomatous uterus. This study confirms the feasibility and the safety of the laparoscopic inbag morcellation versus open morcellation.
Vulvovaginal candidiasis caused by
species is a prevalent fungal infection among women. It is believed that the pathogenesis of
species is linked with the production of biofilm which is considered a virulence factor for this organism. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of
species.
We investigated the molecular identification of 70 vaginal isolates of
species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27-A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes.
Our findings showed that the most common yeast isolated from vaginal discharge was
.
(67%), followed by the non-
species (33%). All
.
complex isolates were confirmed as
.
by HWP-PCR, and all isolates of the
.
complex were revealed to be
.
using the multiplex PCR method. FLC resistance was ob The resistance rate to ITC was found in 10.6% of C. albicans. The frequency of ALS1, ALS3, and HWP1 genes among Candida species was 67.1%, 80%, and 81.4%, respectively. Biofilm formation was observed in 54.3% of Candida species, and the highest frequency detected as a virulence factor was for the ALS3 gene (97.3%) in biofilm-forming species. selleck inhibitor Discussion. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains.The objective of this study was to observe the curative effect of combined arteriovenous approach embolization on complex carotid-cavernous fistulas. The clinical data of 13 patients with complex carotid-cavernous fistulas treated with combined arteriovenous approach embolization in our department between January 2017 and January 2020 were analyzed retrospectively. All 13 patients received the combined arteriovenous approach embolization with coil combined with Onyx glue. The intraoperative angiography immediately showed that the fistula could be completely blocked, and the carotid artery was/got unobstructed. The patients had no clinical symptoms recurring during a follow-up period of 3-18 months, on average 9.1 ± 6.3 months. A combined arteriovenous approach embolization on complex carotid-cavernous fistulas is safe and effective since it can improve the occlusion rate and reduce the relapse rate.The aim of this study was to investigate the effect of cardiac troponin I-interacting kinase (TNNI3K) on sepsis-induced myocardial dysfunction (SIMD) and further explore the underlying molecular mechanisms. In this study, a lipopolysaccharide- (LPS-) induced myocardial injury model was used. qRT-PCR was performed to detect the mRNA expression of TNNI3K. link2 Western blot was conducted to quantitatively detect the expression of TNNI3K and apoptosis-related proteins (Bcl-2, Bax, and caspase-3). ELISA was performed to detect the content of lactate dehydrogenase (LDH) and creatine kinase (CK). TUNEL assay was used to detect the apoptosis of H9C2 cells. In LPS-induced H9C2 cells, TNNI3K was up regulated. link3 Besides, the CK activity, the content of LDH, and the apoptosis of H9C2 cells were significantly increased after treatment with LPS. Silencing TNNI3K decreased the LDH release activity and CK activity and inhibited apoptosis of H9C2 cell. Further research illustrated that si-TNNI3K promoted the protein expression of Bcl-2 and decreased the protein expression of Bax and cleaved caspase-3. The study concluded that TNNI3K was upregulated in LPS-induced H9C2 cells. Importantly, functional research findings indicated that silencing TNNI3K alleviated LPS-induced H9C2 cell injury by regulating apoptosis-related proteins.Pyruvate kinase (PK), a key enzyme that determines glycolytic activity, has been known to support the metabolic phenotype of tumor cells, and specific pyruvate kinase isoform M2 (PKM2) has been reported to fulfill divergent biosynthetic and energetic requirements of cancerous cells. PKM2 is overexpressed in several cancer types and is an emerging drug target for cancer during recent years. Therefore, this study was carried out to identify PKM2 inhibitors from natural products for cancer treatment. Based on the objectives of this study, firstly, plant extract library was established. In order to purify protein for the establishment of enzymatic assay system, pET-28a-HmPKM2 plasmid was transformed to E. coli BL21 (DE3) cells for protein expression and purification. After the validation of enzymatic assay system, plant extract library was screened for the identification of inhibitors of PKM2 protein. Out of 51 plant extracts screened, four extracts Mangifera indica (leaf, seed, and bark) and Bombex ceiba bark ex findings for possible mechanism of action of M. indica (bark and seed) extracts against TNBC via PKM2 inhibition suggesting that M. indica might be of therapeutic interest for the treatment of TNBC.Aortic stenosis is a disease that is increasing in prevalence and manifests as decreased cardiac output, which if left untreated can result in heart failure and ultimately death. It is primarily a disease of the elderly who often have multiple comorbidities. The advent of transcatheter aortic valve therapies has changed the way we treat these conditions. However, long-term results of these therapies remain uncertain. Recently, there has been an increasing number of studies examining the role of both surgical aortic valve replacement and transcatheter aortic valve replacement. We therefore performed a systematic review using Ovid MEDLINE, Ovid Embase, and the Cochrane Library. Two investigators searched papers published between January 1, 2007, and to date using the following terms "aortic valve stenosis," "aortic valve operation," and "transcatheter aortic valve therapy." Both strategies in aortic stenosis treatment highlighted specific indications alongside the pitfalls such as structural valve degeneration and valve thrombosis which have a bearing on clinical outcomes. We propose some recommendations to help clinicians in the decision-making process as technological improvements make both surgical and transcatheter therapies viable options for patients with aortic stenosis. Finally, we assess the role of finite element analysis in patient selection for aortic valve replacement. THVT and AVR-S are both useful tools in the armamentarium against aortic stenosis. The decision between the two treatment strategies should be best guided by a strong robust evidence base, ideally with a long-term follow-up. This is best performed by the heart team with the patient as the center of the discussion.Safflower flowers (Carthamus tinctorius) contain many natural substances with a wide range of economic uses. The most famous dye isolated from flower petals is hydroxysafflor A (HSYA), which has antibacterial, anti-inflammatory, and antioxidant properties. This review is aimed at updating the state of knowledge about their applicability in oncology, pulmonology, cardiology, gynecology, dermatology, gastrology, immunology, and suitability in the treatment of obesity and diabetes and its consequences with information published mainly in 2018-2020. They were also effective in treating obesity and diabetes and its consequences. The issues related to the possibilities of using HSYA in the production of health-promoting food were also analyzed.The R2R3-MYB family is one of the largest plant transcription factor (TF) families playing vital roles in defense, plant growth, and secondary metabolism biosynthesis. Although this gene family has been studied in many species, isoflavonoid biosynthesis-related R2R3-MYB TFs in Callerya speciosa (Champ. ex Benth.) Schot, a traditional Chinese medicinal herb, are poorly understood. Here, a total of 101 R2R3-MYB TFs were identified from C. speciosa transcriptome dataset. 25 clades divided into five functional groups were clustered based on the sequence similarity and phylogenetic tree. Conserved motifs and domain distribution, expression patterns, and coexpression networks were also employed to identify the potential R2R3-MYB TFs in the regulation of isoflavonoid biosynthesis. In silico evaluation showed that the deduced R2R3-CsMYB proteins contain highly conserved R2R3 repeat domain at the N-terminal region, that is the signature motif of R2R3-type MYB TFs. Eight potential TFs (CsMYB17, CsMYB36, CsMYB41, CsMYB44, CsMYB45, CsMYB46, CsMYB72, and CsMYB81) had high degrees of coexpression with four key isoflavonoid biosynthetic genes (CsIFS, CsCHS7, CsHID-1, and CsCHI3), in which CsMYB36 as a potential regulator possessed the highest degree.