Blalockmcdowell9286

Z Iurium Wiki

In addition, we create a new interactive tool to visualize the local context of ADP-ribosylation, such as structural and functional features as well as other post-translational modifications (e.g. phosphorylation, methylation and ubiquitination). This information provides opportunities to explore the biology of ADP-ribosylation and generate new hypotheses for experimental testing.Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e. the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.

Acute respiratory tract infections are a serious clinical burden in infants; human metapneumovirus (HMPV) is an important etiological agent. We investigated genotypic variation and molecular epidemiological patterns among infants infected with HMPV in Sarlahi, Nepal, to better characterize infection in a rural, low-resource setting.

Between May 2011 and April 2014, mid-nasal swabs were collected from 3528 infants who developed respiratory symptoms during a longitudinal maternal influenza vaccine study. Sequencing glycoprotein genes permitted genotyping and analyses among subtypes.

HMPV was detected by reverse-transcriptase polymerase chain reaction (RT-PCR) in 187 (5%) infants, with seasonality observed during fall and winter months. Phylogenetic investigation of complete and partial coding sequences for the F and G genes, respectively, revealed that 3 genotypes were circulating A2, B1, and B2. HMPV-B was most frequently detected with a single type predominating each season. Both HMPV genotypes exhibited comparable median viral loads. Clinically significant differences between genotypes were limited to increased cough duration and general respiratory symptoms for type B.

In rural Nepal, multiple HMPV genotypes circulate simultaneously with an alternating predominance of a single genotype and definitive seasonality. No difference in viral load was detected by genotype and symptom severity was not correlated with RT-PCR cycle threshold or genotype.

In rural Nepal, multiple HMPV genotypes circulate simultaneously with an alternating predominance of a single genotype and definitive seasonality. No difference in viral load was detected by genotype and symptom severity was not correlated with RT-PCR cycle threshold or genotype.RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. find more Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2' modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.Many objects that we encounter have typical material qualities spoons are hard, pillows are soft, and Jell-O dessert is wobbly. Over a lifetime of experiences, strong associations between an object and its typical material properties may be formed, and these associations not only include how glossy, rough, or pink an object is, but also how it behaves under force we expect knocked over vases to shatter, popped bike tires to deflate, and gooey grilled cheese to hang between two slices of bread when pulled apart. Here we ask how such rich visual priors affect the visual perception of material qualities and present a particularly striking example of expectation violation. In a cue conflict design, we pair computer-rendered familiar objects with surprising material behaviors (a linen curtain shattering, a porcelain teacup wrinkling, etc.) and find that material qualities are not solely estimated from the object's kinematics (i.e., its physical [atypical] motion while shattering, wrinkling, wobbling etc.); rather, material appearance is sometimes "pulled" toward the "native" motion, shape, and optical properties that are associated with this object.

Autoři článku: Blalockmcdowell9286 (McCallum Wilkins)