Blairraynor9724
Tapping into this readily available unconventional general surveillance data stream offers added value to existing wildlife disease surveillance programmes through a relatively efficient, low-cost strategy for the early detection of threats.Animals across phyla can detect early cues of infection in conspecifics, thereby reducing the risk of contamination. It is unknown, however, if humans can detect cues of sickness in people belonging to communities with whom they have limited or no experience. To test this, we presented Western faces photographed 2 h after the experimental induction of an acute immune response to one Western and five non-Western communities, including small-scale hunter-gatherer and large urban-dwelling communities. All communities could detect sick individuals. There were group differences in performance but Western participants, who observed faces from their own community, were not systematically better than all non-Western participants. At odds with the common belief that sickness detection of an out-group member should be biased to err on the side of caution, the majority of non-Western communities were unbiased. Our results show that subtle cues of a general immune response are recognized across cultures and may aid in detecting infectious threats.In collective animal motion, coordination is often achieved by feedback between leaders and followers. For stable coordination, a leader's signals and a follower's responses are hypothesized to be attuned to each other. However, their roles are difficult to disentangle in species with highly coordinated movements, hiding potential diversity of behavioural mechanisms for collective behaviour. Here, we show that two Coptotermes termite species achieve a similar level of coordination via distinct sets of complementary leader-follower interactions. Even though C. gestroi females produce less pheromone than C. formosanus, tandem runs of both species were stable. Heterospecific pairs with C. gestroi males were also stable, but not those with C. formosanus males. We attributed this to the males' adaptation to the conspecific females; C. gestroi males have a unique capacity to follow females with small amounts of pheromone, while C. formosanus males reject C. gestroi females as unsuitable but are competitive over females with large amounts of pheromone. An information-theoretic analysis supported this conclusion by detecting information flow from female to male only in stable tandems. Our study highlights cryptic interspecific variation in movement coordination, a source of novelty for the evolution of social interactions.Modern plague outbreaks exhibit a distinct seasonal pattern. https://www.selleckchem.com/products/hc-030031.html By contrast, the seasonality of historical outbreaks and its drivers has not been studied systematically. Here, we investigate the seasonal pattern, the epidemic peak timing and growth rates, and the association with latitude, temperature, and precipitation using a large, novel dataset of plague- and all-cause mortality during the Second Pandemic in Europe and the Mediterranean. We show that epidemic peak timing followed a latitudinal gradient, with mean annual temperature negatively associated with peak timing. Based on modern temperature data, the predicted epidemic growth of all outbreaks was positive between 11.7°C and 21.5°C with a maximum around 17.3°C. Hence, our study provides evidence that the growth of plague epidemics across the whole study region depended on similar absolute temperature thresholds. Here, we present a systematic analysis of the seasonality of historical plague in the Northern Hemisphere, and we show consistent evidence for a temperature-related process influencing the epidemic peak timing and growth rates of plague epidemics.Wildfires are a natural disturbance in many ecosystems. However, their effect on biotic interactions has been poorly studied. Fire consumes the vegetation and the litter layer where many parasites spend part of their life cycles. We hypothesize that wildfires reduce habitat availability for parasites with consequent potential benefits for hosts. We tested this for the lizard Psammodromus algirus and its ectoparasites in a Mediterranean ecosystem. We predicted that lizards in recently burned areas would have lower parasite load (cleaning effect) than those in unburned areas and that this phenomenon implies that lizards spending their entire lives in postfire conditions experience a lower level of parasitism than those living in unburned areas. We compared the ectoparasite load of lizards between eight paired burned/unburned sites, including recent (less than 1 year postfire) and older fires (2-4 years). We found that lizards' ectoparasites prevalence was drastically reduced in recently burned areas. Likewise, lizards in older burned areas showed less evidence of past parasitic infections. Fire disrupted the host-parasite interaction, providing the opportunity for lizards to avoid the negative effects of ectoparasites. Our results suggest that wildfires probably fulfil a role in controlling vector-borne diseases and pathogens, and highlight ecological effects of wildfires that have been overlooked.Additive manufacturing's attributes include print customization, low per-unit cost for small- to mid-batch production, seamless interfacing with mainstream medical 3D imaging techniques, and feasibility to create free-form objects in materials that are biocompatible and biodegradable. Consequently, additive manufacturing is apposite for a wide range of biomedical applications including custom biocompatible implants that mimic the mechanical response of bone, biodegradable scaffolds with engineered degradation rate, medical surgical tools, and biomedical instrumentation. This review surveys the materials, 3D printing methods and technologies, and biomedical applications of metal 3D printing, providing a historical perspective while focusing on the state of the art. It then identifies a number of exciting directions of future growth (a) the improvement of mainstream additive manufacturing methods and associated feedstock; (b) the exploration of mature, less utilized metal 3D printing techniques; (c) the optimization of additively manufactured load-bearing structures via artificial intelligence; and (d) the creation of monolithic, multimaterial, finely featured, multifunctional implants.