Blairpeterson8374

Z Iurium Wiki

Motor disturbances strongly increase the burden of cocaine use disorder (CUDs). The objective of our translational study was to identify the genes and biological pathways underlying the tolerance to cocaine-induced motor effects. In a 5-day protocol measuring motor tolerance to cocaine in rats (N = 40), modeling the motor response to cocaine in patients, whole-genome RNA sequencing was conducted on the ventral and dorsal striatum to prioritize a genetic association study in 225 patients with severe CUD who underwent thorough phenotypic (cocaine-induced hyperlocomotion, CIH; and cocaine-induced stereotypies, CIS) and genotypic [571,000 polymorphisms (SNPs)] characterization. We provide a comprehensive description of the rat striatal transcriptomic response to cocaine in our paradigm. Repeated vs. acute cocaine binge administration elicited 27 differentially expressed genes in the ventral striatum and two in the dorsal striatum. One gene, Lrp1b, was differentially expressed in both regions. In patients, LRP1B was significantly associated with both CIS and CIH. CIH was also associated with VPS13A, a gene involved in a severe neurological disorder characterized by hyperkinetic movements. The LRP1B minor allele rs7568970 had a significant protective effect against CIS (558 SNPs, Bonferroni-corrected p = 0.02) that resisted adjustment for confounding factors, including the amount of cocaine use (adjusted beta = -0.965 and -2.35 for heterozygotes and homozygotes, respectively, p  less then  0.01). Using hypothesis-free prioritization of candidate genes along with thorough methodology in both the preclinical and human analysis pipelines, we provide reliable evidence that LRP1B and VPS13A are involved in the motor tolerance to cocaine in CUD patients, in line with their known pathophysiology.A global effort is currently undertaken to restrain the COVID-19 pandemic. Host immunity has come out as a determinant for COVID-19 clinical outcomes, and several studies investigated the immune profiling of SARS-CoV-2 infected people to properly direct the clinical management of the disease. Thus, lymphopenia, T-cell exhaustion, and the increased levels of inflammatory mediators have been described in COVID-19 patients, in particular in severe cases1. Age represents a key factor in COVID-19 morbidity and mortality2. Understanding age-associated immune signatures of patients are therefore important to identify preventive and therapeutic strategies. read more In this study, we investigated the immune profile of COVID-19 hospitalized patients identifying a distinctive age-dependent immune signature associated with disease severity. Indeed, defined circulating factors - CXCL8, IL-10, IL-15, IL-27, and TNF-α - positively correlate with older age, longer hospitalization, and a more severe form of the disease and may thus represent the leading signature in critical COVID-19 patients.Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.Alternative splicing (AS) is a posttranscriptional mechanism regulating gene expression that complex organisms utilize to expand proteome diversity from a comparatively limited set of genes. Recent research has increasingly associated AS with increased functional complexity in the central nervous systems in higher order mammals. This work has heavily implicated aberrant AS in several neurocognitive and neurodevelopmental disorders, including autism. Due to the strong genetic association between germline PTEN mutations and autism spectrum disorder (ASD), we hypothesized that germline PTEN mutations would alter AS patterns, contributing to the pathophysiology of ASD. In a murine model of constitutional mislocalization of Pten, recapitulating an autism-like phenotype, we found significant changes in AS patterns across the neural transcriptome by analyzing RNA-sequencing data with the program rMATS. A few hundred significant alternative splicing events (ASEs) that differentiate each m3m4 genotype were identified. These ASEs occur in genes enriched in PTEN signaling, inositol metabolism, and several other pathways relevant to the pathophysiology of ASD. In addition, we identified expression changes in several splicing factors known to be enriched in the nervous system. For instance, the master regulator of microexons, Srrm4, has decreased expression, and consequently, we found decreased inclusion of microexons in the Ptenm3m4/m3m4 cortex (~10% decrease). We also demonstrated that the m3m4 mutation disrupts the interaction between Pten and U2af2, a member of the spliceosome. In sum, our observations point to germline Pten disruption changing the landscape of alternative splicing in the brain, and these changes may be relevant to the pathogenesis and/or maintenance of PTEN-ASD phenotypes.Autism is a complex neurodevelopmental condition with substantial phenotypic, biological, and etiologic heterogeneity. It remains a challenge to identify biomarkers to stratify autism into replicable cognitive or biological subtypes. Here, we aim to introduce a novel methodological framework for parsing neuroanatomical subtypes within a large cohort of individuals with autism. We used cortical thickness (CT) in a large and well-characterized sample of 316 participants with autism (88 female, age mean 17.2 ± 5.7) and 206 with neurotypical development (79 female, age mean 17.5 ± 6.1) aged 6-31 years across six sites from the EU-AIMS multi-center Longitudinal European Autism Project. Five biologically based putative subtypes were derived using normative modeling of CT and spectral clustering. Three of these clusters showed relatively widespread decreased CT and two showed relatively increased CT. These subtypes showed morphometric differences from one another, providing a potential explanation for inconsistent case-control findings in autism, and loaded differentially and more strongly onto symptoms and polygenic risk, indicating a dilution of clinical effects across heterogeneous cohorts.

Autoři článku: Blairpeterson8374 (Guerra Benjamin)