Blackwellpotter0488

Z Iurium Wiki

Nanostructured (BiO)2CO3 samples were prepared, and their thermal decomposition behaviors were investigated by thermogravimetric analysis under atmospheric conditions. The method of preparation and Ca2+ doping could affect the morphologies of products and quantity of defects, resulting in different thermal decomposition mechanisms. The (BiO)2CO3 nanoplates decomposed at 300-500 °C with an activation energy of 160-170 kJ/mol. Two temperature zones existed in the thermal decomposition of (BiO)2CO3 and Ca-(BiO)2CO3 nanowires. The first one was caused by the decomposition of (BiO)4(OH)2CO3 impurities and (BiO)2CO3 with surface defects, with an activation energy of 118-223 kJ/mol, whereas the second one was attributed to the decomposition of (BiO)2CO3 in the core of nanowires, with an activation energy of 230-270 kJ/mol for the core of (BiO)2CO3 nanowires and 210-223 kJ/mol for the core of Ca-(BiO)2CO3 nanowires. Introducing Ca2+ ions into (BiO)2CO3 nanowires improved their thermal stability and accelerated the decomposition of (BiO)2CO3 in the decomposition zone.The paper is devoted to the possibility of using magnetoelectric materials for the production of a crankshaft position sensor for automobiles. The composite structure, consisting of a PZT or LiNbO3 piezoelectric with a size of 20 mm × 5 mm × 0.5 mm, and plates of the magnetostrictive material Metglas of the appropriate size were used as a sensitive element. The layered structure was made from a bidomain lithium niobate monocrystal with a Y + 128° cut and amorphous metal of Metglas. Various combinations of composite structures are also investigated; for example, asymmetric structures using a layer of copper and aluminum. The output characteristics of these structures are compared in the resonant and non-resonant modes. It is shown that the value of the magnetoelectric resonant voltage coefficient was 784 V/(cm·Oe), and the low-frequency non-resonant magnetoelectric coefficient for the magnetoelectric element was about 3 V/(cm·Oe). The principle of operation of the position sensor and the possibility of integration into automotive systems, using the CAN bus, are examined in detail. To obtain reliable experimental results, a special stand was assembled on the basis of the SKAD-1 installation. The studies showed good results and a high prospect for the use of magnetoelectric sensors as position sensors and, in particular, of a vehicle's crankshaft position sensor.Myelodysplastic syndromes (MDS), heterogeneous diseases of hematopoietic stem cells, exhibit a significant risk of progression to secondary acute myeloid leukemia (sAML) that are typically accompanied by MDS-related changes and therefore significantly differ to de novo acute myeloid leukemia (AML). Within these disorders, the spectrum of cytogenetic alterations and oncogenic mutations, the extent of a predisposing defective osteohematopoietic niche, and the irregularity of the tumor microenvironment is highly diverse. However, the exact underlying pathophysiological mechanisms resulting in hematopoietic failure in patients with MDS and sAML remain elusive. There is recent evidence that the post-transcriptional control of gene expression mediated by microRNAs (miRNAs), long noncoding RNAs, and/or RNA-binding proteins (RBPs) are key components in the pathogenic events of both diseases. In addition, an interplay between RBPs and miRNAs has been postulated in MDS and sAML. Although a plethora of miRNAs is aberrantly expressed in MDS and sAML, their expression pattern significantly depends on the cell type and on the molecular make-up of the sample, including chromosomal alterations and single nucleotide polymorphisms, which also reflects their role in disease progression and prediction. Decreased expression levels of miRNAs or RBPs preventing the maturation or inhibiting translation of genes involved in pathogenesis of both diseases were found. Therefore, this review will summarize the current knowledge regarding the heterogeneity of expression, function, and clinical relevance of miRNAs, its link to molecular abnormalities in MDS and sAML with specific focus on the interplay with RBPs, and the current treatment options. This information might improve the use of miRNAs and/or RBPs as prognostic markers and therapeutic targets for both malignancies.Ceramic and polymeric membrane systems were compared at the pilot scale for separating agave fructans into different molecular weight fractions that help to diversify them into more specific industrial applications. The effect of the transmembrane pressure of ultrafiltration performance was evaluated through hydraulic permeability, permeate flux and rejection coefficients, using the same operating conditions such as temperature, feed concentration and the molecular weight cut-off (MWCO) of membranes. The fouling phenomenon and the global yield of the process were evaluated in concentration mode. ADT-007 concentration A size distribution analysis of agave fructans is presented and grouped by molecular weight in different fractions. Great differences were found between both systems, since rejection coefficients of 68.6% and 100% for fructans with degrees of polymerization (DP) > 10, 36.3% and 99.3% for fructooligosaccharides (FOS) and 21.4% and 34.2% for mono-disaccharides were obtained for ceramic and polymeric membrane systems, respectively. Thus, ceramic membranes are better for use in the fractionation process since they reached a purity of 42.2% of FOS with a yield of 40.1% in the permeate and 78.23% for fructans with DP > 10 and a yield of 70% in the retentate. Polymeric membranes make for an efficient fructan purification process, eliminating only mono-disaccharides, and reaching a 97.7% purity (considering both fructan fractions) with a yield of 64.3% in the retentate.Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2-5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150-300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3-0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.

Autoři článku: Blackwellpotter0488 (Harrington Huff)