Bjerrummalik3415
The high tensile strength and irradiation resistance of oxide dispersion strengthened (ODS) ferritic steels is attributed to the ultrafine and dispersed oxides within the matrix. The high content of oxygen and yttrium is critical for the formation of dense Y-rich oxides. However, only few studies have reported the effect of oxygen content on the microstructure and mechanical properties of ODS steels. Herein, we employed gas atomization reactive synthesis to prepare pre-alloy powders and then hot isostatic pressing (HIP) to consolidate two 22Cr-5Al ODS steels with different oxygen content. Our results showed Y-rich precipitates at and near grain boundaries of the as-HIPed alloys. Moreover, with the oxygen content increasing from 0.04 to 0.16 wt%, more precipitates precipitated in the as-HIPed alloy, and the ultimate tensile strength of the alloy was improved. However, increasing the oxygen content to 0.16 wt% led to formation of stripe and chain precipitates at and near grain boundaries, which caused a partial intergranular fracture of the as-HIPed alloy.Extracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected with human immunodeficiency virus (HIV-1) may provide insights into pathogenesis, inflammation, and disease progression. However, distinguishing plasma membrane EVs from exosomes, exomeres, apoptotic bodies, virions, and contaminating proteins remains challenging. We aimed at comparing sucrose and iodixanol density and velocity gradients along with commercial kits as a means of separating EVs from HIV particles and contaminating protein like calprotectin; and thereby evaluating the suitability of current plasma EVs analysis techniques for identifying new biomarkers of HIV-1 immune activation. Multiple analysis have been performed on HIV-1 infected cell lines, plasma from HIV-1 patients, or plasma from HIV-negative her use as biomarkers. By revealing a new population of EVs enriched in miR-155 and mitochondrial DNA, this study paves a way to increase our understanding of HIV-1 pathogenesis.Neuronal nitric oxide synthase (nNOS) has various roles as a neurotransmitter. However, studies to date have produced insufficient data to fully support the correlation between nNOS and bowel motility. This study aimed to investigate the correlation between nNOS expression and gastrointestinal (GI) tract motility using a stress-induced neonatal maternal separation (NMS) mouse model. In this study, we generated a genetically modified mouse with the HiBiT sequence knock-in into the nNOS gene using CRISPR/Cas9 for analyzing accurate nNOS expression. nNOS expression was measured in the stomach, small intestine, large intestine, adrenal gland, and hypothalamus tissues after establishing the NMS model. The NMS model exhibited a significant increase in nNOS expression in large intestine, adrenal gland, and hypothalamus. Moreover, a significant positive correlation was observed between whole gastrointestinal transit time and the expression level of nNOS. We reasoned that NMS induced chronic stress and consequent nNOS activation in the hypothalamic-pituitary-adrenal (HPA) axis, and led to an excessive increase in intestinal motility in the lower GI tract. These results demonstrated that HiBiT is a sensitive and valuable tool for analyzing in vivo gene activation, and nNOS could be a biomarker of the HPA axis-linked lower intestinal tract dysfunction.The present study aimed to develop predictive models of calf birth weight (CBW) from liveweight (LW) data collected remotely and individually using an automated in-paddock walk-over-weighing scale (WOW). Twenty-eight multiparous Charolais cows were mated with two Brahman bulls. The WOW was installed at the only watering point to capture LW over five months. Calf birth date and weight were manually recorded, and the liveweight change experienced by a dam at calving (ΔLWC) was calculated as pre-LW minus post-LW calving. Cow non-foetal weight loss at calving (NFW) was calculated as ΔLWC minus CBW. Pearson's correlational analysis and simple linear regressions were used to identify associations between all variables measured. No correlations were found between ΔLWC and pre-LW (p = 0.52), or post-LW (p = 0.14). However, positive associations were observed between ΔLWC and CBW (p less then 0.001, R2 = 0.56) and NFW (p less then 0.001, R2 = 0.90). Thus, the results suggest that 56% of the variation in ΔLWC is attributed to the calf weight, and consequently could be used as an indicator of CBW. Remote, in-paddock weighing systems have the potential to provide timely and accurate LW data of breeding cows to improve calving management and productivity.The SARS-CoV-2 outbreak was declared a worldwide pandemic in 2020. Infection triggers the respiratory tract disease COVID-19, which is accompanied by serious changes in clinical biomarkers such as hemoglobin and interleukins. The same parameters are altered during hemolysis, which is characterized by an increase in labile heme. We present two computational-experimental approaches aimed at analyzing a potential link between heme-related and COVID-19 pathophysiologies. Herein, we performed a detailed analysis of the common pathways induced by heme and SARS-CoV-2 by superimposition of knowledge graphs covering heme biology and COVID-19 pathophysiology. Focus was laid on inflammatory pathways and distinct biomarkers as the linking elements. In a second approach, four COVID-19-related proteins, the host cell proteins ACE2 and TMPRSS2 as well as the viral proteins 7a and S protein were computationally analyzed as potential heme-binding proteins with an experimental validation. The results contribute to the understanding of the progression of COVID-19 infections in patients with different clinical backgrounds and may allow for a more individual diagnosis and therapy in the future.Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. WM8014 Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.PD-1 Immune checkpoint inhibitors, such as Pembrolizumab, can have a durable beneficial therapeutic effect in patients with advanced melanoma. However, not all patients will benefit equally from these therapies, and (potentially life-threatening) immune-related adverse events may occur. In this study, we investigate the value of early response assessment by FDG-PET/CT as a biomarker for predicting survival. We identified all patients with advanced melanoma who were treated with Pembrolizumab in our medical center and underwent a baseline and at least one follow-up FDG-PET/CT. The total metabolic tumor volume (TMTV) was calculated, and the evolution was compared to survival parameters. A total of 77 patients underwent a baseline and at least one follow-up FDG-PET/CT, 36 patients had follow-up imaging within 2-4 months, and 21 patients an FDG-PET/CT 5-6 months after baseline. When the TMTV evolution was categorized into two subgroups (stable/decrease versus increase), an association was found between stability or decrease in TMTV and better PFS and OS. A similar trend, however non-significant, was observed at 5-6 months. The evolution in TMTV as assessed by FDG-PET/CT 2-4 months after treatment initiation is associated with long-term outcomes in patients with advanced melanoma treated with Pembrolizumab.Populations of vector-borne pathogens are shaped by the distribution and movement of vector and reservoir hosts. To study what impact host and vector association have on tick-borne pathogens, we investigated the population structure of Borrelia lusitaniae using multilocus sequence typing (MLST). Novel sequences were acquired from questing ticks collected in multiple North African and European locations and were supplemented by publicly available sequences at the Borrelia Pubmlst database (accessed on 11 February 2020). Population structure of B. lusitaniae was inferred using clustering and network analyses. Maximum likelihood phylogenies for two molecular tick markers (the mitochondrial 16S rRNA locus and a nuclear locus, Tick-receptor of outer surface protein A, trospA) were used to confirm the morphological species identification of collected ticks. Our results confirmed that B. lusitaniae does indeed form two distinguishable populations one containing mostly European samples and the other mostly Portuguese and North African samples. Of interest, Portuguese samples clustered largely based on being from north (European) or south (North African) of the river Targus. As two different Ixodes species (i.e., I. ricinus and I. inopinatus) may vector Borrelia in these regions, reference samples were included for I. inopinatus but did not form monophyletic clades in either tree, suggesting some misidentification. Even so, the trospA phylogeny showed a monophyletic clade containing tick samples from Northern Africa and Portugal south of the river Tagus suggesting a population division in Ixodes on this locus. The pattern mirrored the clustering of B. lusitaniae samples, suggesting a potential co-evolution between tick and Borrelia populations that deserve further investigation.Decussation of axonal tracts is an important hallmark of vertebrate neuroanatomy resulting in one brain hemisphere controlling the contralateral side of the body and also computing the sensory information originating from that respective side. Here, we show that BMP interferes with optic chiasm formation and RGC pathfinding in zebrafish. Experimental induction of BMP4 at 15 hpf results in a complete ipsilateral projection of RGC axons and failure of commissural connections of the forebrain, in part as the result of an interaction with shh signaling, transcriptional regulation of midline guidance cues and an affected optic stalk morphogenesis. Experimental induction of BMP4 at 24 hpf, resulting in only a mild repression of forebrain shh ligand expression but in a broad expression of pax2a in the diencephalon, does not per se prevent RGC axons from crossing the midline. It nevertheless shows severe pathologies of RGC projections e.g., the fasciculation of RGC axons with the ipsilateral optic tract resulting in the innervation of one tectum by two eyes or the projection of RGC axons in the direction of the contralateral eye.