Bjerregaardhiggins6578

Z Iurium Wiki

41 resulting from whole genome linkage analysis. Haplotype analysis revealed co-segregation with four affected family members (IV-9, III-4, IV-5, and IV-8). Lymphoblastoid cell lines from the proband with this mutation showed approximately halved KDM2B expression in comparison with healthy controls. KDM2B acts as an H3K4 and H3K36 histone demethylase. Our findings suggest that haploinsufficiency of KDM2B in the process of development, like other H3K4 and H3K36 methylation modifiers, may have caused MPAs, intellectual disability, and SCZ in this Japanese family.Dysosteosclerosis (DOS) is a rare sclerosing bone dysplasia characterized by osteosclerosis and platyspondyly. DOS is genetically heterogeneous and causally associated with mutations in three genes, SLC29A3, CSF1R, and TNFRSF11A. TNFRSF11A has been known as the causal gene for osteopetrosis, autosomal recessive 7, and is recently reported to cause DOS in three cases, which show a complex genotype-phenotype relationship. The phenotypic spectrum of TNFRSF11A-associated sclerosing bone dysplasia remains unclear and needs to be characterized further in more cases with molecular genetic diagnosis. check details Here, we report another TNFRSF11A-associated DOS case with a homozygous missense mutation (p.R129C). The mutation effect is different from the previous three cases, in which truncated or elongated RANK proteins were generated in isoform specific manner, thus enriching our understanding of the genotype-phenotype association in TNFRSF11A-associated sclerosing bone dysplasia. Besides DOS, our case presented with intracranial extramedullary hematopoiesis, which is an extremely rare condition and has not been identified in any other sclerosing bone dysplasias with molecular genetic diagnosis. Our findings provide the fourth case of TNFRSF11A-associated DOS and further expand its phenotypic spectrum.Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.To examine whether irritable bowel syndrome (IBS) was related to the future risk of Parkinson's disease (PD), we conducted a nested case-control study in the Swedish total population including 56,564 PD cases identified from the Swedish Patient Register and 30 controls per case individually matched by sex and year of birth. Odds ratios (ORs) with 95% confidence intervals (CIs) for having a prior diagnosis of IBS were estimated using conditional logistic regression. We furthermore conducted a cohort study using the Swedish Twin Registry following 3046 IBS patients identified by self-reported abdominal symptoms and 41,179 non-IBS individuals. Through Cox proportional hazard models, we estimated hazard ratios (HRs) and 95% CIs for PD risk. In the nested case-control study, 253 (0.4%) PD cases and 5204 (0.3%) controls had a previous IBS diagnosis. IBS diagnosis was associated with a 44% higher risk of PD (OR = 1.44, 95% CI 1.27-1.63). Temporal relationship analyses showed 53% and 38% increased risk of PD more than 5 and 10 years after IBS diagnosis, respectively. In the cohort analysis based on the Swedish Twin Registry, there was no statistically significantly increased risk of PD related to IBS (HR = 1.25, 95% CI = 0.87-1.81). Our results suggest a higher risk of PD diagnosis after IBS. These results provide additional evidence supporting the importance of the gut-brain axis in PD.Small fiber neuropathy (SFN) has been suggested as a trigger of restless legs syndrome (RLS). An increased prevalence of peripheral neuropathy has been demonstrated in Parkinson's disease (PD). We aimed to investigate, in a cross-sectional manner, whether SFN is overrepresented in PD patients with concurrent RLS relative to PD patients without RLS, using in vivo corneal confocal microscopy (IVCCM) and quantitative sensory testing (QST) as part of small fiber assessment. Study participants comprised of age- and sex-matched PD patients with (n = 21) and without RLS (n = 21), and controls (n = 13). Diagnosis of RLS was consolidated with the sensory suggested immobilization test. Assessments included nerve conduction studies (NCS), Utah Early Neuropathy Scale (UENS), QST, and IVCCM, with automated determination of corneal nerve fiber length (CNFL) and branch density (CNBD) from wide-area mosaics of the subbasal nerve plexus. Plasma neurofilament light (p-NfL) was determined as a measure of axonal degeneration. No significant differences were found between groups when comparing CNFL (p = 0.81), CNBD (p = 0.92), NCS (p = 0.82), and QST (minimum p = 0.54). UENS scores, however, differed significantly (p = 0.001), with post-hoc pairwise testing revealing higher scores in both PD groups relative to controls (p = 0.018 and p = 0.001). Analysis of all PD patients (n = 42) revealed a correlation between the duration of L-dopa therapy and CNBD (ρ = -0.36, p = 0.022), and p-NfL correlated with UENS (ρ = 0.35, p = 0.026) and NCS (ρ = -0.51, p = 0.001). Small and large fiber neuropathy do not appear to be associated with RLS in PD. Whether peripheral small and/or large fiber pathology associates with central neurodegeneration in PD merits further longitudinal studies.Much microbiome research has focused on populations that are predominantly of European descent, and from narrow demographics that do not capture the socio-economic and lifestyle differences which impact human health. Here we examined the airway microbiomes of the Orang Asli, the indigenous peoples of Malaysia. A total of 130 participants were recruited from two sites in the north-eastern state of Terengganu in Peninsular Malaysia. Using 16S rRNA sequencing, the nasal microbiome was significantly more diverse in those aged 5-17 years compared to 50+ years (p = 0.023) and clustered by age (PERMANOVA analysis of the Bray-Curtis distance, p = 0.001). Hierarchical clustering of Bray-Curtis dissimilarity scores revealed six microbiome clusters. The largest cluster (n = 28; 35.4%) had a marked abundance of Corynebacterium. In the oral microbiomes Streptococcus, Neisseria and Haemophilus were dominant. Using conventional microbiology, high levels of Staphylococcus aureus carriage were observed, particularly in the 18-65 age group (n = 17/36; 47.2% 95% CI 30.9-63.5). The highest carriage of pneumococci was in the less then 5 and 5 to 17 year olds, with 57.1% (4/7) and 49.2% (30/61), respectively. Sixteen pneumococcal serotypes were identified, the most common being the nonvaccine-type 23A (14.6%) and the vaccine-type 6B (9.8%). The prevalence of pneumococcal serotypes covered by pneumococcal conjugate vaccines support introduction into a Malaysian national immunisation schedule. In addition, the dominance of Corynebacterium in the airway microbiomes is intriguing given their role as a potentially protective commensal with respect to acute infection and respiratory health.Nasopharyngeal cancer (NPC), endemic in Southeast Asia, lacks effective diagnostic and therapeutic strategies. Even in high-income countries the 5-year survival rate for stage IV NPC is less than 40%. Here we report high somatostatin receptor 2 (SSTR2) expression in multiple clinical cohorts comprising 402 primary, locally recurrent and metastatic NPCs. We show that SSTR2 expression is induced by the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) via the NF-κB pathway. Using cell-based and preclinical rodent models, we demonstrate the therapeutic potential of SSTR2 targeting using a cytotoxic drug conjugate, PEN-221, which is found to be superior to FDA-approved SSTR2-binding cytostatic agents. Furthermore, we reveal significant correlation of SSTR expression with increased rates of survival and report in vivo uptake of the SSTR2-binding 68Ga-DOTA-peptide radioconjugate in PET-CT scanning in a clinical trial of NPC patients (NCT03670342). These findings reveal a key role in EBV-associated NPC for SSTR2 in infection, imaging, targeted therapy and survival.The growth of lamellar crystals has been studied in particular for spherulites in polymeric materials. Even though such spherulitic structures and their growth are of crucial importance for the mechanical and optical properties of the resulting polymeric materials, several issues regarding the residual stress remain unresolved in the wider context of crystal growth. To gain further insight into micro-mechanical forces during the crystallization process of lamellar crystals in polymeric materials, herein, we introduce tetraarylsuccinonitrile (TASN), which generates relatively stable radicals with yellow fluorescence upon homolytic cleavage at the central C-C bond in response to mechanical stress, into crystalline polymers. The obtained crystalline polymers with TASN at the center of the polymer chain allow not only to visualize the stress arising from micro-mechanical forces during polymer crystallization via fluorescence microscopy but also to evaluate the micro-mechanical forces upon growing polymer lamellar crystals by electron paramagnetic resonance, which is able to detect the radicals generated during polymer crystallization.Individuals with Parkinson's disease present with a complex clinical phenotype, encompassing sleep, motor, cognitive, and affective disturbances. However, characterizations of PD are typically made for the "average" patient, ignoring patient heterogeneity and obscuring important individual differences. Modern large-scale data sharing efforts provide a unique opportunity to precisely investigate individual patient characteristics, but there exists no analytic framework for comprehensively integrating data modalities. Here we apply an unsupervised learning method-similarity network fusion-to objectively integrate MRI morphometry, dopamine active transporter binding, protein assays, and clinical measurements from n = 186 individuals with de novo Parkinson's disease from the Parkinson's Progression Markers Initiative. We show that multimodal fusion captures inter-dependencies among data modalities that would otherwise be overlooked by field standard techniques like data concatenation. We then examine how patient subgroups derived from the fused data map onto clinical phenotypes, and how neuroimaging data is critical to this delineation.

Autoři článku: Bjerregaardhiggins6578 (Loft Ray)