Bjerregaardfoged5686
The use of synthetic antioxidants has been associated with serious concerns for human and environmental health. During ripening stages, tomato fruit is exposed to different abiotic stresses which not only influence its nutritional, mechanical, and functional properties at harvest, but also affect the quality and shelf life of the fruit during storage. This study investigated the pattern of changes in dietary antioxidants during various ripening stages of tomato fruit (cv. Red Rose) and their impact on storage behavior of the fruit during cold storage. Tomato fruits were harvested at mature green, breaker, turning, pink, light-red and red stages of maturity. Then, they were analysed for flesh firmness, soluble solids content, titratable acidity, total sugars, pH, dry matter content, lipophilic (lycopene, β-carotene, and total carotenoids), and hydrophilic (ascorbic acid, phenolic and flavonoids) antioxidants. Additional fruits were harvested at each maturity stage and divided into three equal lots, then were subjected to low-temperature (10 ± 1 °C) storage with 80 ± 5% RH, for 7, 14, and 21 days. Flesh firmness, and the levels of dietary antioxidants were analysed following the subsequent storage periods. The results revealed that the peak of hydrophilic antioxidants such as ascorbic acid, phenolic compounds, and flavonoids was between the 'pink' and the 'light-red' stages of fruit maturity. Whereas tomatoes harvested at the 'red' stage of maturity had the highest levels of lycopene and β-carotene. Both the stage of fruit maturity at harvest and duration of cold storage influenced flesh firmness, organoleptic and functional properties of 'Red Rose' tomato fruit. In conclusion, the results of the current investigation have practical implications in formulating foods with improved functional properties at processing industries.In situations of restricted food supply, the trophic niches of closely-related species of animals should be separate. For sit-and-wait hunters, such as shrikes, this is associated with competition for food and hunting sites. In the present study, the foraging behaviour of two shrike species - Red-tailed Shrike Lanius phoenicuroides and Red-backed Shrike Lanius collurio - was studied in a desert habitat in Oman. The fieldwork was carried out in September 2019, during the peak migration of these birds. Their behaviour was recorded in detail during 30-minute observation bouts. A General Linear Mixed Model with logit link function and binomial error variance was used to compare their behaviour. The type of perch and its height did not differ between them, but there were significant differences in their use of look-out posts only in the mean duration of a single perching event, which was more than twice as long in Red-backed Shrike. No differences in prey size were found between the species and hunting success (the ratio of successful attacks to all attacks) was similar in both (RtS-RbS 46 vs. 61%). Dietary diversity was twice as great in Red-tailed Shrike as in Red-backed Shrike, but in general, their diets did not differ very much. Dietary overlap between the species at this level of prey identification was 92%. This absence of differences in some aspects of behaviour and diet may be due to the similarity of the two species, above all their same body size, and even the possibility of hybridization. If the species compared are so similar due to body size, behaviour and evolutionary relationship their food niches may overlap.In this study, the 1H HRMAS-NMR (High-resolution Magic Angle Spinning-Nuclear Magnetic Resonance) spectra of 52 cheese samples obtained from the South Korean dairy farms were evaluated for their metabolic profiling and intensities associating with the sensory qualities. The NMR profiles displayed a broad range of compounds comprising amino acids, carbohydrates, organic acids, and phospholipids. Afterwards, the cheese samples were categorized into three groups (more likeness - G1, moderate likeness - G2, less likeness - G3), in relating to their sensory scores. The NMR data of the samples were later investigated through multivariate statistical tools to define the variations in metabolic fingerprints of every cheese sample and their intensities hailing in individual sensory groups. The unsupervised PCA employing all cheese samples unveiled the uniqueness in metabolite profiles of the brown and cheddar type cheeses (outliers). Moreover, Gouda and other types of cheeses displayed samples positioning in respective of their metabolite profiles. The pairwise comparison of sensory groups in the supervised models perceived better separation in OPLS-DA than PLS-DA. The corresponding VIP (PLS-DA) and loading (OPLS-DA) plots revealed amino acids and organic acids (lactate, citrate) as significant variables. The discrimination of G 1 Gouda type of cheeses against G 2 and G 3 was highly associated with their citrate levels. Further investigation using heatmaps displayed clear differentiation between each sensory group in terms of the levels of amino acids, lactate, citrate, phospholipids, and glycerol, conveying these variations are likely due to proteolytic and metabolic processes in cheese ripening. This study concluded that 1H HRMAS-NMR metabolite profile of the Korean cheeses is consistence with their sensory qualities. Further, the candidate metabolites identified in this study confers their potential application as biomarkers in cheese industries for faster and effective validation of sensory characteristics.Oxidative damage has been associated with the pathophysiology of depression. Macroalgae are equipped with antioxidant defense system to counteract the effects of free radicals. We explored the use of Malaysian Padina australis to attenuate high dose corticosterone-mediated oxidative damage in a cellular model mimicking depression. CUDC-101 inhibitor Fresh specimen of P. australis was freeze-dried and extracted sequentially with hexanes, ethyl acetate and ethanol. The extracts were screened for their phytochemical contents and antioxidant activities. Ethanol extract demonstrated the most potent antioxidant capacity and was selected for subsequent assays against high dose corticosterone of 600 µM-mediated oxidative damage in the rat pheochromocytoma (PC12) cells. The corticosterone reduced the cell viability, glutathione (GSH) level, aconitase activity, and mitochondrial membrane potential (MMP); and increased the lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) level and apoptosis. However, the extent of oxidative damage was reversed by 0.