Bjergcollier4875
The presence of a redox-active dpp-Bian ligand in Pt and Pd complexes resulted in the induction of reactive oxygen species (ROS) in cancer cells. In addition, these complexes were able to intercalate into DNA, indicating the dual mechanism of action.Herein, we report the first Ni-catalyzed enantioselective deaminative alkylation of amino acid and peptide derivatives with unactivated olefins. Key for success was the discovery of a new sterically encumbered bis(oxazoline) ligand backbone, thus offering a de novo technology for accessing enantioenriched sp3-sp3 linkages via sp3 C-N functionalization. Our protocol is distinguished by its broad scope and generality across a wide number of counterparts, even in the context of late-stage functionalization. In addition, an enantioselective deaminative remote hydroalkylation reaction of unactivated internal olefins is within reach, thus providing a useful entry point for forging enantioenriched sp3-sp3 centers at remote sp3 C-H sites.Oxyhalides possessing the merits of oxides and halides have widely received attention for their comprehensive physical performances, especially as potential nonlinear optical (NLO) crystals. Here, based on conventional strategy for obtaining acentric compounds, a Te4+ lone-pair cation was introduced into oxyhalides, and one oxyfluoride, HgTeO2F(OH), was obtained via a hydrothermal reaction. Crystallized in the polar space group Pca21, the layered structure of HgTeO2F(OH) is composed of V-shaped [HgO2]2- groups and [TeO2F(OH)]2- pyramids, in which the [TeO2F(OH)]2- pyramid first served as the NLO functional motif. Its powder sample exhibits a phase-matchable SHG response of 1.1 × KH2PO4 at 1064 nm, and its birefringence (0.09@1064 nm) is sufficient for phase-matchable behavior, which manifests its comprehensive capacity as a promising NLO candidate. Theoretical calculations about electronic structure and optical properties are also carried out, revealing that the Te4+ lone-pair cation makes the predominant contribution to the SHG effect and synergizes with the [HgO2]2- groups.Solid-state batteries (SSBs) with lithium metal anodes offer higher specific energy than conventional lithium-ion batteries, but they must utilize areal capacities >3 mAh cm-2 and cycle at current densities >3 mA cm-2 to achieve commercial viability. Substantial research effort has focused on increasing the rate capabilities of SSBs by mitigating detrimental processes such as lithium filament penetration and short circuiting. Less attention has been paid to understanding how areal capacity impacts lithium plating/stripping behavior in SSBs, despite the importance of areal capacity for achieving high specific energy. Here, we investigate and quantify the relationships among areal capacity, current density, and plating/stripping stability using both symmetric and full-cell configurations with a sulfide solid-state electrolyte (Li6PS5Cl). We show that unstable deposition and short circuiting readily occur at rates much lower than the measured critical current density when a sufficient areal capacity is passed. A systematic study of continuous plating under different electrochemical conditions reveals average "threshold capacity" values at different current densities, beyond which short circuiting occurs. Cycling cells below this threshold capacity significantly enhances cell lifetime, enabling stable symmetric cell cycling at 2.2 mA cm-2 without short circuiting. Finally, we show that full cells with LiNi0.8Mn0.1Co0.1O2 also exhibit threshold capacity behavior, but they tend to short circuit at lower current densities and areal capacities. Our results quantify the effects of transferred capacity and demonstrate the importance of using realistic areal capacities in experiments to develop viable solid-state batteries.Under solvothermal conditions, 10 molecular-ionic platinum compounds [Pt(NIA)2]·(L)·nH2O (L = dicarboxylate) were synthesized. In the reaction, acetonitrile undergoes trimerization in situ to generate N-(1-iminoethyl)acetamidine (NIA), which coordinates to PtII ions in forming the N-(1-iminoethyl)acetamidine platinum cation, while the organic carboxylates act as anions. Structural analysis shows that carboxylate ligands regulate the mode of packing of [Pt(NIA)2] in those compounds. Photoluminescence studies show that the photoluminescence behaviors of those compounds also depended on the carboxylate ligands. 1-4, 6, and 7 show blue light emission with fluorescence emission wavelengths of 437-440 nm despite the different carboxylate ligands used. 5 and 8 show green emissions with maximum intensity peak positions of 522 nm. Compared with that of 5 and 8, the emission of 9 and 10 has the same red shifts with peak positions of 567 and 528 nm. The variable-temperature photoluminescence studies reveal that 8 and 10 show two different thermal quenching (TQ) zones in the range of 80-420 K, while the emission intensity of 9 shows negative thermal quenching at low temperatures of 80-220 K and TQ in the range of 220-420 K.The wide application of nanomaterials in consumer and medical products has raised concerns about their potential adverse effects on human health. Thus, more and more biological assessments regarding the toxicity of nanomaterials have been performed. selleck chemicals However, the different ways the evaluations were performed, such as the utilized assays, cell lines, and the differences of the produced nanoparticles, make it difficult for scientists to analyze and effectively compare toxicities of nanomaterials. Fortunately, machine learning has emerged as a powerful tool for the prediction of nanotoxicity based on the available data. Among different types of toxicity assessments, nanomaterial cytotoxicity was the focus here because of the high sensitivity of cytotoxicity assessment to different treatments without the need for complicated and time-consuming procedures. In this review, we summarized recent studies that focused on the development of machine learning models for prediction of cytotoxicity of nanomaterials. The goal was to provide insight into predicting potential nanomaterial toxicity and promoting the development of safe nanomaterials.A noncentrosymmetric salt-inclusion germanate, Rb10Li3Sc4Ge12O36F, was grown through spontaneous crystallization from a LiF-RbF flux. It crystallizes in the polar space group P31c with cell parameters of a = 10.7587(3) Å, c = 21.6691(10) Å, and Z = 2. Its structure features a complex 3D framework composed of helical [Ge4O12] chains from condensed [GeO4] tetrahedra running along the c axis, which are interconnected by the [ScO6] octahedra. Voids of the 3D net are filled with Rb+ ions, Li+ ions, and isolated trigonal-bipyramidal [Rb3Li2F] superalkali clusters. The title compound has a large band gap of 5.6 eV, a moderate powder second-harmonic-generation response of 0.9KDP, and an extremely small birefringence of 0.001, as was further unraveled by theoretical calculations.The emission of white light from a single material is atypical and is of interest for solid-state lighting applications. Broadband light emission has been observed in some layered perovskite derivatives, A2PbBr4 (A = R-NH3+), and correlates with static structural distortions corresponding to out-of-plane tilting of the lead bromide octahedra. While materials with different organic cations can yield distinct out-of-plane tilts, the underlying origin of the octahedral tilting remains poorly understood. Using high energy resolution (e.g., quasi-elastic) neutron scattering, this contribution details the rotational dynamics of the organic cations in A2PbBr4 materials where A = n-butylammonium (nBA), 1,8-diaminooctammonium (ODA), and 4-aminobutyric acid (GABA). The organic cation dynamics differentiate (nBA)2PbBr4 from (ODA)PbBr4 or (GABA)2PbBr4 in that the larger spatial extent of dynamics of nBA yields a larger effective cation radius. The larger effective volume of the nBA cation in (nBA)2PbBr4 yields a closer to ideal A-site geometry, preventing the out-of-plane tilt and broadband luminescence. In all three compounds, we observe hydrogen dynamics attributed to rotation of the ammonium headgroup and at a time scale faster than the white light photoluminescence studied by time-correlated single photon counting spectroscopy. This supports a previous assignment of the broadband emission as resulting from a single ensemble, such that the emissive excited state experiences many local structures faster than the emissive decay. The findings presented here highlight the role of the organic cation and its dynamics in hybrid organic-inorganic perovskites and white light emission.The mass spectrometry imaging (MSI) technique is widely used in several fields due to its ability to provide spatial information of samples. However, for existing MSI methods, the sample is typically placed on a two-dimensional (2D) platform and is scanned back and forth. As a result, the platform size limits the imaging size. This paper proposes a new MSI method that involves the initial imprinting of chemicals on a two-dimensional string plane area. The string plane was then unraveled to a one-dimensional (1D) string, and the chemicals imprinted on it were ionized using a lab-made ion source. Finally, a 2D MSI image was reconstructed through data processing (2D-1D-2D mass imaging). Compared with traditional MSI methods, the imaging size is no longer limited by the platform size, making it possible to perform the MSI of large samples. As proof of concept, this method was used to image an intact seedling of Broussonetia papyrifera. As a result, clear and overall MS images were obtained, demonstrating the ability of this method to analyze large samples.Iron oxide anode materials for rechargeable lithium-ion batteries have garnered extensive attention because of their inexpensiveness, safety, and high theoretical capacity. Nanostructured iron oxide anodes often undergo negative fading, that is, unconventional capacity increase, which results in a capacity increasing upon cycling. However, the detailed mechanism of negative fading still remains unclear, and there is no consensus on the provenance. Herein, we comprehensively investigate the negative fading of iron oxide anodes with a highly ordered mesoporous structure by utilizing advanced synchrotron-based analysis. Electrochemical and structural analyses identified that the negative fading originates from an optimization of the electrolyte-derived surface layer, and the thus formed layer significantly contributes to the structural stability of the nanostructured electrode materials, as well as their cycle stability. This work provides an insight into understanding the origin of negative fading and its influence on nanostructured anode materials.As a natural antitumor drug, curcumin (CUR) has received increasing attention from researchers and patients due to its various medicinal properties. However, currently CUR is still restricted due to its low and stand-alone therapeutic effects that seriously limit its clinical application. Here, by using cellulose nanocrystals (CNCs) as a nanocarrier to load CUR and AuNPs simultaneously, we developed a hybrid nanoparticle as a codrug delivery system to enhance the low and stand-alone therapeutic effects of CUR. Aided with the encapsulation of β-cyclodextrin (βCD), both the solubility and the stability of CUR are greatly enhanced (solubility increased from 0.89 to 131.7 μg/mL). Owing to the unique rod-like morphology of CNCs, the system exhibits an outstanding loading capacity of 31.4 μg/mg. Under the heat effects of coloaded AuNPs, the system demonstrates a high release rate of 77.63%. Finally, with CNC as a bridge nanocarrier, all aforementioned functions were integrated into one hybrid nanoparticle. The all-in-one integration ensures CUR to have enhanced therapeutic effects and enables the delivery system to exhibit combined chemo-photothermal therapy outcomes.