Bitschflanagan5672

Z Iurium Wiki

The water treatment alone did not explain either the variability of the assemblage or the differences in the biosilica accumulation. Hence, we hypothesize that genetics influence the variability substantially. These results demonstrate that biosilica accumulation differs among and within C4 species and that water availability is not the only driver in this process.Plasma, also called the fourth state of matter, is partially or fully ionized gas [...].The Myrtaceae is a very large and diverse family containing a number of economically and ecologically valuable species. In Australia, the family contains approximately 1700 species from 70 genera and is structurally and floristically dominant in many diverse ecosystems. In addition to threats from habitat fragmentation and increasing rates of natural disasters, infection by myrtle rust caused by Austropuccinia psidii is of significant concern to Australian Myrtaceae species. Repeated infections of new growth have caused host death and suppressed host populations by preventing seed set. Although most Myrtaceae species demonstrate orthodox seed storage behavior, exceptional species such as those with desiccation sensitive seed or from myrtle rust-suppressed populations require alternate conservation strategies such as those offered by cryobiotechnology. Targeting seven key Australian genera, we reviewed the available literature for examples of cryobiotechnology utilized for conservation of Myrtaceae. While there were only limited examples of successful cryopreservation for a few genera in this family, successful cryopreservation of both shoot tips and embryonic axes suggest that cryobiotechnology provides a viable alternative for the conservation of exceptional species and a potential safe storage method for the many Myrtaceae species under threat from A. psidii.Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors and their host targets. However, this is hindered due to inefficient targeted gene disruption in D. septosporum, which is required for virulence gene characterisation. Here we report the first successful application of CRISPR/Cas9 gene editing to a Dothideomycete forest pathogen, D. septosporum. Disruption of the dothistromin pathway regulator gene AflR, with a known phenotype, was performed using nonhomologous end-joining repair with an efficiency of > 90%. Transformants with a range of disruption mutations in AflR were produced. Disruption of Ds74283, a D. septosporum gene encoding a secreted cell death elicitor, was also achieved using CRISPR/Cas9, by using a specific donor DNA repair template to aid selection where the phenotype was unknown. In this case, 100% of screened transformants were identified as disruptants. In establishing CRISPR/Cas9 as a tool for gene editing in D. septosporum, our research could fast track the functional characterisation of candidate virulence factors in D. septosporum and helps set the foundation for development of this technology in other forest pathogens.Osmanthus fragrans is an aromatic plant which is widely used in landscaping and garden greening in China. However, the process of flower opening is significantly affected by ambient temperature changes. Cell expansion in petals is the primary factor responsible for flower opening. Xyloglucan endoglycolase/hydrolase (XTH) is a cell-wall-loosening protein involved in cell expansion or cell-wall weakening. Through whole-genome analysis, 38 OfXTH genes were identified in O. fragrans which belong to the four main phylogenetic groups. The gene structure, chromosomal location, synteny relationship, and cis-acting elements prediction and expression patterns were analyzed on a genome-wide scale. The expression patterns showed that most OfXTHs were closely associated with the flower-opening period of O. fragrans. At the early flower-opening stage (S1 and S2), transcriptome and qRT-PCR analysis revealed the expression of OfXTH24, 27, 32, 35, and 36 significantly increased under low ambient temperature (19 °C). It is speculated that the five genes might be involved in the regulation of flower opening by responding to ambient temperature changes. Our results provide solid foundation for the functional analysis of OfXTH genes and help to explore the mechanism of flower opening responding to ambient temperature in O. fragrans.Efficient methodologies for automated seed quality evaluations are important for the seed industry. Advanced seed technology research requires the use of adequate methods to ensure good seed performance under adverse environmental conditions; thus, providing producers with detailed, quick, and accurate information on structural seed integrity and ensuring vigorous production. To address this problem, this study aimed to determine Brachiaria brizantha (Marandu cv., Piatã cv. and Xaraés cv.) seed quality through radiographic imaging analyses associated with vigor tests and anatomical characterizations. Brachiaria seed cultivars displaying different physical and physiological attributes were selected and subjected to the 1000-seed weight test, water content determinations, X-ray analyses, germination tests, and anatomical characterizations. The X-ray analyses made it possible to establish a relationship between the X-ray images and other determined variables. Furthermore, the X-ray images can indicate evidence of internal and external damage that could later compromise germination. The Marandu and Piatã cultivars presented the highest germination percentages, germination speed indices, normal seedling development, and cellular structure preservation compared to the Xaraés cultivar. Cefodizime chemical To summarize, X-ray analyses are efficient methods used for the selection of higher physical quality cultivars and can aid in the decision-making processes of companies and seed producers worldwide.In this study, leaf hydraulic functionality of co-occurring evergreen and deciduous shrubs, grown on Olympus Mountain, has been compared. Four evergreen species (Arbutus andrachne, Arbutus unedo, Quercus ilex and Quercus coccifera) and four deciduous species (Carpinus betulus, Cercis siliquastrum, Coronilla emeroides and Pistacia terebinthus) were selected for this study. Predawn and midday leaf water potential, transpiration, stomatal conductance, leaf temperature and leaf hydraulic conductance were estimated during the summer period. The results demonstrate different hydraulic tactics between the deciduous and evergreen shrubs. Higher hydraulic conductance and lower stomatal conductance were obtained in deciduous plants compared to the evergreens. Additionally, positive correlations were detected between water potential and transpiration in the deciduous shrubs. The seasonal leaf hydraulic conductance declined in both deciduous and evergreens under conditions of elevated vapor pressure deficit during the summer; however, at midday, leaf water potential reached comparable low values, but the deciduous shrubs exhibited higher hydraulic conductance compared to the evergreens. It seems likely that hydraulic traits of the coexisting evergreen and deciduous plants indicate water spending and saving tactics, respectively; this may also represent a limit to drought tolerance of these species grown in a natural environment, which is expected to be affected by global warming.Soil lead (Pb) contamination is a recognized environmental and global health problem. Phytoextraction of Pb using switchgrass (Panicum virgatum L.), a second-generation biofuel crop, is typically enhanced by soil chelation. The effectiveness of four different chelating agents, phytic acid (inositol hexaphosphate), citric acid, NTA (nitrilotriacetic acid), and EDTA (ethylenediaminetetraacetic acid) was examined in pot culture. Plants treated with EDTA (1 mM) showed significantly higher shoot Pb concentrations compared to control plants and plants treated with other chelates. Lead-solubility following phytoextraction was examined by soil washing using 0.01 and 0.05 M acetic acid as an extractant solution revealed no significant differences in Pb concentrations in soil among different chelate treatments and control. Furthermore, the effects of different concentrations (1, 2, 5 and 10 mM) of NTA on Pb phytoextraction of switchgrass were examined. Plants receiving 5 mM and 10 mM NTA had significantly higher foliage concentrations of Pb compared to plants treated with lower levels (1 and 2 mM) of NTA. Moreover, the effect of NTA application alone was significantly improved by a combined application of Triton X-100, an alkyl polyglucoside (APG); the Pb concentration in the foliage of switchgrass was more than doubled when treated with NTA combined with APG. The use of NTA combined with APG has great potential in improving phytoextraction efficiencies of switchgrass on Pb-contaminated soils.We explored the concentration patterns of the bioactive metabolite plumericin produced by Himatanthus tarapotensis (Apocynaceae) under different edaphic conditions and variations in rainfall intensity, as well as its potential role in the chemical defense against insect herbivores. Values of plumericin concentration from leaves were obtained by High-Performance Liquid Chromatography, and evaluated as a function of differences in soil types, variation of precipitation, and variation of the abundance of insect herbivores, using first a Repeated Measures Correlation (rmcorr) and then a Generalized Linear Mixed Model (GLMM) analysis. Plumericin concentration is highly variable among plants, but with a significantly higher concentration in plants growing on clay soil compared to that of the white-sand soil habitat (p < 0.001). Plumericin concentration is not affected by precipitation. The caterpillar of Isognathus leachii (Lepidoptera Sphingidae) is the most conspicuous herbivore of H. tarapotensis, and its presence is continuous but not related to plumericin concentration, probably because of its capacity to elude the chemical defense of this plant. Nevertheless, our multivariate model revealed that plumericin concentration is related to the abundance of Hymenoptera (Formicidae), and this relationship is significantly influenced by the soil parameters of carbon percentage, clay percentage, and phosphorous percentage (p < 0.001). Plumericin is a mediating agent in the interaction between H. tarapotensis and its natural environment. Variation in plumericin concentration would be induced by the abundance of Hymenoptera (Formicidae), probably as a chemical response against these insects, and by differences in soil nutrient availability.Duckweeds can be potentially used in human and animal nutrition, biotechnology or wastewater treatment. To cultivate large quantities of a defined product quality, a standardized production process is needed. A small-scale, re-circulating indoor vertical farm (IVF) with artificial lighting and a nutrient control and dosing system was used for this purpose. The influence of different light intensities (50, 100 and 150 µmol m-2 s-1) and spectral distributions (red/blue ratios 70/30, 50/50 and 30/70%) on relative growth rate (RGR), crude protein content (CPC), relative protein yield (RPY) and chlorophyll a of the duckweed species Lemna minor and Wolffiella hyalina were investigated. Increasing light intensity increased RGR (by 67% and 76%) and RPY (by 50% and 89%) and decreased chlorophyll a (by 27% and 32%) for L. minor and W. hyalina, respectively. The spectral distributions had no significant impact on any investigated parameter. Wolffiella hyalina achieved higher values in all investigated parameters compared to L.

Autoři článku: Bitschflanagan5672 (Brennan Henderson)