Bishopdurham1430
The effect of population dominates the changes in water demand in the northern regions, with the exception of the Northwestern Region, where water intensity is the leading factor, possibly because the Balkans' largest nuclear power plant is located in the region. In the southern regions where income is higher, income has been the most important determinant of water demand, particularly in recent years.Lanthanum molybdate/magnetite (M-La2(MoO4)3) with various LaCl3/Fe3O4 mass ratios was synthesized and optimized for selective phosphate removal from wastewater. M-La2(MoO4)3 (21) was selected on the basis of phosphate sorption capacity for further experiments and characterized by a variety of methods. The phosphate sorption kinetics, isotherms, and matrix effect were studied. The maximum sorption capacity at initial pH 7 indicates the possible applicability M-La2(MoO4)3 (21) in removing phosphate from the aquatic environment. Phosphate removal by M-La2(MoO4)3 (21) with high selectivity was achieved in the presence of other co-existing anions, while calcium and magnesium ions were found to inhibit the sorption process. check details The sorption isotherm study showed that Freundlich and Sips models fit better the Langmuir model, indicating that heterogeneous multilayer sorption was dominant during the phosphate sorption process. Sorption kinetic results showed that the pseudo-first-order kinetic model can describe well the phosphate sorption process by M-La2(MoO4)3 (21). Consecutive sorption-desorption runs showed that M-La2(MoO4)3 (21) could be reused for a few cycles. Simultaneous removal of phosphate and organic matter was achieved in real wastewater by using M-La2(MoO4)3 (21). The sorption mechanism was inner-sphere complexation.A magnetically separable Fe3O4/CuO core-shell heterostructure photocatalyst was synthesized by hydrothermal method. The obtained photocatalyst was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and UV-visible diffuse reflectance (UV-DRS). The obtained photocatalyst was used for the degradation of azo dye Direct Red 89 (DR89), under visible light irradiation provided by fluorescent lamp of 100 W in the presence of 7 mL of H2O2 (30%); the results of the photocatalytic activity for Fe3O4/CuO photocatalyst showed that in the presence of 0.75 g dispersed in 250 mL of 40 mg/L of DR89 dye at pH 6 the dye was completely removed after 240 min. Moreover, the photocatalytic activity of the prepared Fe3O4/CuO was enhanced 11 and 9 times compared with the pure Fe3O4 or CuO. The effect of initial dye concentrations on the photocatalytic activity was studied in the range of 20-60 mg/L, and the results showed that the catalyst has a good photocatalytic activity of 89% even at high concentration (60 mg/L). Furthermore, the catalyst maintained its activity after 5 cycles, and its paramagnetic property facilitates its recovery. The excellent photodegradation activity of Fe3O4/CuO was attributed to the low band gap of the catalyst equal to 1.54 eV and the enhancement of light absorption in visible range of 330-780 nm, but also to a better charge carriers separation, due to the presence of Fe3O4 that reduces electron/hole recombination.Despite their environmental impact, fossil-fuel power plants are still commonly used due to their high capacity and relatively low cost compared to renewable energy sources. The aim of this paper is to assess the performance of such energy systems as a key element within a fossil-fuel energy supply network. The methodology relies on fossil-fuel power plant modelling to define an optimal energy management level. However, it can be difficult to model the energy management of thermal power stations (TPS). Therefore, this paper shows an energy efficiency model found on a new hybrid algorithm that is a combination of multivariate adaptive regression splines (MARS) and differential evolution (DE) to estimate net annual electricity generation (NAEG) and carbon dioxide (CO2) emissions (CDE) from economic and performance variables in thermal power plants. This technique requires the DE optimisation of the MARS hyperparameters during the development of the training process. In addition to successfully forecast net annual electricity generation (NAEG) and carbon dioxide (CO2) emissions (CDE) (coefficients of determination with a value of 0.9803 and 0.9895, respectively), the mathematical model used in this work can determine the importance of each economic and energy parameter to characterize the behaviour of thermal power stations.Green synthesis of silver nano-particles (AgNPs) from silver nitrate was carried out using purple-colored rice leaves' extracts containing higher phenols, anthocyanins, and flavonoids. The efficacy of synthesized AgNPs was tested against rice diseases and investigation was carried out to check negative effect of AgNPs on soil microbes. Substantial reduction of total anthocyanins, total phenols, and total flavonoids was observed in reaction mixture during AgNP formation indicating the role of secondary metabolites on AgNP formation and stabilization. Scanning electron microscopy coupled with energy-dispersive spectroscopic images and FTIR spectral analysis of AgNPs confirmed the presence of elemental silver encapped by biomolecules. The optimized reaction parameters for synthesis of AgNPs from silver nitrate were (a) 48 h of incubation, (b) 91 (v/v) 1 mM AgNO3plant extract, and (c) room temperature at 20-30 °C. Zeta potential and hydrodynamic particle sizes of synthesized AgNPs were ranged between - 16.61 to - 29.45 mV and 36-107 nm, respectively, at different time of incubation. AgNPs could control effectively Rhizoctonia solani and Xanthomonas oryzae pv. Oryzae and Helminthosporium oryzae. AgNPs at higher concentration could cause negative effect on microbial biomass carbon and soil enzymes for distant future. But the negative effects of AgNP solution (10% of 1 mM AgNPs) were comparable to commercial fungicide, carbendazim. The synthesized AgNPs with desirable characters were effective against a number of disease-causing pathogens in rice, and it can be recommended as broad-spectrum pesticide.