Bildevelasquez0017

Z Iurium Wiki

Dietary diversity has long been recognized as a key component of diet quality and many dietary diversity indicators (DDIs) have been developed. This systematic scoping review aimed to present a comprehensive inventory of DDIs and summarize evidence linking DDIs and dietary adequacy or health outcomes in adolescents and adults. Two search strategies were developed to identify peer-reviewed articles published in English up until June 2018 and were applied to Medline, Web of Science, and Scopus. A 2-stage screening process was used to select the studies to be reviewed. Four types of DDIs were identified among 161 articles, the majority of them belonging to the food group-based indicator type (n = 106 articles). Fifty studies indicated that DDIs were proxies of nutrient adequacy, but there was a lack of evidence about their relation with nutrients to limit. Associations between DDIs and health outcomes were largely inconsistent among 137 studies, especially when the outcomes studied were body weight (n = 60) and noncommunicable diseases (n = 41). We conclude that the ability of DDIs to reflect diet quality was found to be principally limited to micronutrient adequacy and that DDIs do not readily relate to health outcomes. These findings have implications for studies in low- and lower-middle-income economies where DDIs are often used to assess dietary patterns and overall diet quality.The state-resolved photodissociation of the CO(1Σ+) + S(1S0) photoproduct channel, formed by vacuum ultraviolet photoexcitation of OCS to a progression of the symmetric stretching vibration (ν1') in the E and F states, has been investigated by using the time-sliced velocity map ion imaging technique. The total kinetic energy release spectra and the vibrational state specific anisotropy parameters (β) were obtained based on the raw images of S(1S0) photoproducts detected in the wavelength ranges of 134.40-140.98 nm, respectively. Except for vibrational band origins, the CO(1Σ+) photoproducts are found to have more significant populations at highly vibrationally excited states as the symmetric stretching vibrational excitation of the E and F states increases. Furthermore, the vibrational-state specific β values for the CO(1Σ+) + S(1S0) channel via the E and F states both show a sudden change from negative to positive in the vicinity of moderately vibronic levels of the E and F states. Apabetalone molecular weight This anomalous phenomenon suggests that multiple excited states with different symmetries are involved in the photoexcitation process at relatively short photolysis wavelengths due to the strong vibronic couplings existing in the higher vibronic levels of the E and F states, and the formation of CO(1Σ+) + S(1S0) photoproducts may proceed by different nonadiabatic interactions from the prepared excited states to the lower dissociative state 1Σ+, with strong dependence of the initially symmetric stretching excitation in the Rydberg-type transitions.In this study, a combined experimental and theoretical study of the nonlinear optical properties (NLO) of two chalcone derivatives, (E)-3-(2-methoxyphenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (MPSP) and (E)-3-(3-nitrophenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (NPSP), in DMSO is reported. The single crystal structures of the compounds, which differ only by the type and position of one substituent, were grown using the slow evaporation technique, and the main structural differences are discussed. The two-photon absorption and first-order hyperpolarizability measurements were performed via the Z-scan technique and hyper-Rayleigh scattering experiment in DMSO. The theoretical calculations were performed using the Density Functional Theory (DFT) at the CAM-B3LYP/6-311++G(d,p) level, and the sum-over-states (SOS) approach in both static and dynamic cases. Besides the electron conjugation achieved by the aromatic rings, olefins, and carbonyl groups, both compounds have a nearly flat chalcone backbone, which is believed to contribute to the nonlinear optical properties. MPSP and NPSP have different positions, even though they have roughly the same conformation and form C-HO interactions. For several studied frequencies, the HRS first hyperpolarizability values for MPSP are greater than those for NPSP, indicating that in most cases the NLO properties of MPSP are better. The comparison among the theoretical and experimental HRS first hyperpolarizability results showed a good agreement. In addition, the two-dimensional second order nonlinear optical spectra obtained from the sum-over-states model indicate good second-order NLO responses of the two chalcone derivatives under external fields. Our findings are important not only to show the potential nonlinear optical application of the two new compounds but also to gain an insight into how different chemical compositions might affect the crystal structures and physico-chemical properties.Recent studies on the exothermic complex-forming reactions have improved our understanding of complex-forming reactions greatly, however, so far a similar level of study on endothermic ones has been rather limited. In this work, the endothermic complex-forming reaction Si(1D) + H2 → SiH + H and its deuterated isotopic variant are investigated by quantum dynamics (QD) and ring polymer molecular dynamics (RPMD) calculations on a new global ab initio potential energy surface (PES) for the ground electronic state, which is constructed based on 8996 symmetry unique points computed at the icMRCI+Q/aug-cc-pVQZ level. The PES reproduces our ab initio data very well in the dynamically important regions, on which the ro-vibrational energy levels of SiH2 are calculated and general good agreement with experiment is obtained. The integral cross sections and product angular and state distributions are computed in a wide range of collision energies, and interesting dynamics behaviors are revealed. The rate coefficients are also investigated, which display an exponential rise from 2.09 × 10-20 to 6.00 × 10-12 cm3 s-1 for the Si(1D) + H2 reaction as the temperature increases from 300 to 1500 K, in contrast to the nearly temperature-independent behavior of exothermic complex-forming reactions. In addition, the applicability of the RPMD approach is demonstrated, and the kinetic isotope effect is investigated, the ratio of which decreases from 7.89 (300 K) to 1.70 (1500 K). The effects of tunneling and initial rotational excitation are also discussed.

Autoři článku: Bildevelasquez0017 (Mogensen Jessen)