Berryteague3392
Protein kinase C (PKC) signaling is a highly conserved signaling module that plays a central role in a myriad of physiological processes, ranging from cell proliferation to cell death, via various signaling pathways, including MAPK signaling. Stress granules (SGs) are non-membranous cytoplasmic foci that aggregate in cells exposed to environmental stresses. Here, we explored the role of SGs in PKC/MAPK signaling activation in fission yeast. High-heat stress (HHS) induced Pmk1 MAPK activation and Pck2 translocation from the cell tips into poly(A)-binding protein (Pabp)-positive SGs. Pck2 dispersal from the cell tips required Pck2 kinase activity, and constitutively active Pck2 exhibited increased translocation to SGs. Importantly, Pmk1 deletion impaired Pck2 recruitment to SGs, indicating that MAPK activation stimulates Pck2 SG translocation. Consistently, HHS-induced SGs delayed Pck2 relocalization at the cell tips, thereby blocking subsequent Pmk1 reactivation after recovery from HHS. HHS partitioned Pck2 into the Pabp-positive SG-containing fraction, which resulted in reduced Pck2 abundance and kinase activity in the soluble fraction. Taken together, these results indicate that MAPK-dependent Pck2 SG recruitment serves as a feedback mechanism to intercept PKC/MAPK activation induced by HHS, which might underlie PKC-related diseases.Our recent findings demonstrated that the histone chaperone and DNA repair factor aprataxin and PNK-like factor (APLF) could regulate epithelial to mesenchymal transition (EMT) during the reprogramming of murine fibroblasts and in breast cancer metastasis. Therefore, we investigated the function of APLF in EMT associated with mouse development. Here, we show that APLF is predominantly enhanced in trophectoderm (TE) and lineages derived from TE in pre- and post-implantation embryos. Downregulation of APLF induced the hatching of embryos in vitro, with a significant increase in Cdh1 and Cdx2 expression. Aplf short hairpin RNA-microinjected embryos failed to implant in vivo Rescue experiments neutralized the knockdown effects of APLF both in vitro and in vivo Reduced expression of Snai2 and Tead4, and the gain in Cdh1 and sFlt1 (also known as Flt1) level, marked the differentiation of APLF-knocked down trophoblast stem cells that might contribute towards the impaired implantation of embryos. Hence, our findings suggest a novel role for APLF during implantation and post-implantation development of mouse embryos. We anticipate that APLF might contribute to the establishment of maternal-fetal connection, as its fine balance is required to achieve implantation and thereby attain proper pregnancy.Autophagy is a degradative cellular pathway that targets cytoplasmic contents and organelles for turnover by the lysosome. Various autophagy pathways play key roles in the clearance of viral infections, and many families of viruses have developed unique methods for avoiding degradation. read more Some positive-stranded RNA viruses, such as enteroviruses and flaviviruses, usurp the autophagic pathway to promote their own replication. We previously identified the endoplasmic reticulum (ER)-localized protein BPIFB3 as an important negative regulator of non-canonical autophagy that uniquely impacts the replication of enteroviruses and flaviviruses. Here, we find that many components of the canonical autophagy machinery are not required for BPIFB3 depletion-induced autophagy and identify the host factors that facilitate its role in the replication of enteroviruses and flaviviruses. link2 Using proximity-dependent biotinylation (BioID) followed by mass spectrometry, we identify ARFGAP1 and TMED9 as two cellular components that interact with BPIFB3 to regulate autophagy and viral replication. Importantly, our data demonstrate that non-canonical autophagy in mammalian cells can be controlled outside of the traditional pathway regulators and define the role of two proteins in BPIFB3 depletion mediated non-canonical autophagy.Mutations in prominin-1 (prom1) and photoreceptor cadherin (cdhr1) are associated with inherited retinal degenerative disorders but their functions remain unknown. Here, we used CRISPR-Cas9 to generate prom1-null, cdhr1-null, and prom1 plus cdhr1 double-null Xenopuslaevis and then documented the effects of these mutations on photoreceptor structure and function. Prom1-null mutations resulted in severely dysmorphic photoreceptors comprising overgrown and disorganized disc membranes. Cone outer segments were more severely affected than rods and had an impaired electroretinogram response. Cdhr1-null photoreceptors did not appear grossly dysmorphic, but ultrastructural analysis revealed that some disc membranes were overgrown or oriented vertically within the plasma membrane. Double-null mutants did not differ significantly from prom1-null mutants. Our results indicate that neither prom1 nor cdhr1 are necessary for outer segment disc membrane evagination or the fusion event that controls disc sealing. Rather, they are necessary for the higher-order organization of the outer segment. Prom1 may align and reinforce interactions between nascent disc leading edges, a function more critical in cones for structural support. Cdhr1 may secure discs in a horizontal orientation prior to fusion and regulate cone lamellae size.This article has an associated First Person interview with the first author of the paper.Early hematopoietic progenitors undergo sophisticated developmental processes to become committed innate lymphoid cell (ILC) progenitors and ultimately mature ILC subsets in the periphery. Basic leucine zipper ATF-like transcription factor (Batf) plays important roles in lymphocyte biology. We report here that Batf regulates the production of bone marrow ILC progenitors and maintenance of peripheral ILCs. The expression of Batf is induced during ILC development at the α-lymphoid progenitor stage in response to the cytokine IL-7. As a potential mechanism, up-regulated Batf binds and activates transcription of the Nfil3 gene to promote ILC hematopoiesis. Batf is necessary to maintain normal numbers of early and late ILC progenitors in the bone marrow and mature ILC1, ILC2, ILC3, and NK cells in most peripheral tissues. Batf deficiency causes ILC lymphopenia, leading to defective ILC responses to inflammatory cytokines and defective immunity to enteric bacterial infections. Thus, Batf plays critical roles in bone marrow hematopoiesis, peripheral homeostasis, and effector functions of ILCs.Cohesin restrains cytokine-induced transcriptional memory.Neutralizing antibody responses to SARS-CoV-2, though often of limited longevity, have generally been assumed to be protective against COVID-19 disease.Coral gasdermin E is cleaved by activated caspase-3 to induce pyroptosis, a form of inflammatory programmed cell death, in response to a bacterial pathogen (see the related Research Article by Jiang et al.).Gasdermins are executioners of the inflammatory cell death pathway pyroptosis that has so far been studied exclusively in vertebrates. In this study, we identified gasdermin E (GSDME) homologs in several invertebrate species including corals. We report that coral GSDME was cleaved by caspase 3 at two sites, yielding two active isoforms of GSDME N-terminal domain that were capable of inducing pyroptosis. Ectopic coexpression of coral GSDME and caspase 3 in human cells promoted pyroptosis. Corals infected with Vibrio coralliilyticus, a bacterial pathogen causing rapid tissue necrosis of corals worldwide, exhibited necrotic death with elevated caspase 3 activity and GSDME cleavage, whereas inhibition of caspase 3 blocked GSDME cleavage and protected corals from necrotic death. These results indicate that functional gasdermin exists in invertebrates and that coral gasdermin is involved in pathogen-induced coral death. link3 Furthermore, our studies also suggest that mediation of pyroptosis is an evolutionarily conserved function of gasdermins.
Immunotherapy is currently ineffective for nearly all pancreatic ductal adenocarcinomas (PDAC), largely due to its tumor microenvironment (TME) that lacks antigen-experienced T effector cells (Teff). Vaccine-based immunotherapies are known to activate antigen-specific Teffs in the peripheral blood. To evaluate the effect of vaccine therapy on the PDAC TME, we designed a neoadjuvant and adjuvant clinical trial of an irradiated, GM-CSF-secreting, allogeneic PDAC vaccine (GVAX).
Eighty-seven eligible patients with resectable PDAC were randomly assigned (111) to receive GVAX alone or in combination with two forms of low-dose cyclophosphamide. Resected tumors following neoadjuvant immunotherapy were assessed for the formation of tertiary lymphoid aggregates (TLA) in response to treatment. The clinical endpoints are disease-free survival (DFS) and overall survival (OS).
The neoadjuvant treatment with GVAX either alone or with two forms of low-dose cyclophosphamide is safe and feasible without adversely increasing the surgical complication rate. Patients in Arm A who received neoadjuvant and adjuvant GVAX alone had a trend toward longer median OS (35.0 months) than that (24.8 months) in the historical controls who received adjuvant GVAX alone. However, Arm C, who received low-dose oral cyclophosphamide in addition to GVAX, had a significantly shorter DFS than Arm A. When comparing patients with OS > 24 months to those with OS < 15 months, longer OS was found to be associated with higher density of intratumoral TLA.
It is safe and feasible to use a neoadjuvant immunotherapy approach for PDACs to evaluate early biologic responses. In-depth analysis of TLAs is warranted in future neoadjuvant immunotherapy clinical trials.
It is safe and feasible to use a neoadjuvant immunotherapy approach for PDACs to evaluate early biologic responses. In-depth analysis of TLAs is warranted in future neoadjuvant immunotherapy clinical trials.The avian pectoralis muscle demonstrates incredible plasticity. This muscle is the sole thermogenic organ of small passerine birds, and many temperate small passerines increase pectoralis mass in winter, potentially to increase heat production. Similarly, this organ can double in size prior to migration in migratory birds. In this Commentary, following the August Krogh principle, I argue that the avian pectoralis is the perfect tissue to reveal general features of muscle physiology. For example, in both mammals and birds, skeletal muscle fiber diameter is generally accepted to be within 10-100 µm. This size constraint is assumed to include reaction-diffusion limitations, coupled with metabolic cost savings associated with fiber geometry. However, avian muscle fiber structure has been largely ignored in this field, and the extensive remodeling of the avian pectoralis provides a system with which to investigate this. In addition, fiber diameter has been linked to whole-animal metabolic rates, although this has only been addressed in a handful of bird studies, some of which demonstrate previously unreported levels of plasticity and flexibility. Similarly, myonuclei, which are responsible for protein turnover within the fiber, have been forgotten in the avian literature. The few studies that have addressed myonuclear domain (MND) changes in avian muscle have found rates of change not previously seen in mammals. Both fiber diameter and MND have strong implications for aging rates; most aging mammals demonstrate muscular atrophy (a decrease in fiber diameter) and changes in MND. As I discuss here, these features are likely to differ in birds.